RSA实现登录页面密码加密(ASP.NET MVC)

Demo:http://download.csdn.net/detail/zhuankeshumo/6668903

Introduction

RSA实现登录页面密码加密 实现方式:ASP.NET MVC

RSA是第一个比较完善的公开密钥算法,它既能用于加密,也能用于数字签名。RSA以它的三个发明者Ron Rivest, Adi Shamir, Leonard Adleman的名字首字母命名,这个算法经受住了多年深入的密码分析,虽然密码分析者既不能证明也不能否定RSA的安全性,但这恰恰说明该算法有一定的可信性,目前它已经成为最流行的公开密钥算法。

RSA的安全基于大数分解的难度。其公钥和私钥是一对大素数(100到200位十进制数或更大)的函数。从一个公钥和密文恢复出明文的难度,等价于分解两个大素数之积(这是公认的数学难题)。 


RSA 算法

RSAParameters 字段

包含

对应的 PKCS #1 字段

D

d,私钥指数

privateExponent

DP

d mod (p - 1)

exponent1

DQ

d mod (q - 1)

exponent2

Exponent

e,公钥指数

publicExponent

InverseQ

(InverseQ)(q) = 1 mod p

coefficient

Modulus

n

modulus

P

p

prime1

Q

q

prime2




实例描述:
  在本文里,不可能对RSA算法的正确性作严格的数学证明,但我们可以通过一个简单的例子来理解RSA的工作原理。为了便于计算。在以下实例中只选取小数值的素数p,q,以及e,假设用户A需要将明文“key”通过RSA加密后传递给用户B,过程如下:
(1)设计公私密钥(e,n)和(d,n)。
令p=3,q=11,得出n=p×q=3×11=33;f(n)=(p-1)(q-1)=2×10=20;取e=3,(3与20互质)则e×d≡1 mod f(n),即3×d≡1 mod 20。
(≡是数论中表示同余的符号。公式中,≡符号的左边必须和符号右边同余,也就是两边模运算结果相同。显而易见,不管f(n)取什么值,符号右边1 mod f(n)的结果都等于1;符号的左边d与e的乘积做模运算后的结果也必须等于1。这就需要计算出d的值,让这个同余等式能够成立。)
d怎样取值呢?可以用试算的办法来寻找。试算结果见下表:
                                                                                                           
  通过试算我们找到,当d=7时,e×d≡1 mod f(n)同余等式成立。因此,可令d=7。从而我们可以设计出一对公私密钥,加密密钥(公钥)为:KU =(e,n)=(3,33),解密密钥(私钥)为:KR =(d,n)=(7,33)。
(2)英文数字化。
  将明文信息数字化,并将每块两个数字分组。假定明文英文字母编码表为按字母顺序排列数值,即:
                                                             
  则得到分组后的key的明文信息为:11,05,25。
(3)明文加密 
  用户加密密钥(3,33) 将数字化明文分组信息加密成密文。由C≡M^e(mod n)得:
  得到相应的密文信息为:11,31,16。
4)密文解密。
  用户B收到密文,若将其解密,只需要计算M≡C^d(mod m)。
  用户B得到明文信息为:11,05,25。根据上面的编码表将其转换为英文,我们又得到了恢复后的原文“key”。 
    
        实际运用要比这复杂得多,由于RSA算法的公钥私钥的长度(模长度)要到1024位甚至2048位才能保证安全,因此,p、q、e的选取、公钥私钥的生成,加密解密模指数运算都有一定的计算程序,需要仰仗计算机高速完成。

Background

为了防止密码被嗅探,通常使用https进行流传输或用不成称加密算法对密码进行加密

实现思路:提交表单前将用户名提交到服务器生成RSA公私钥,公钥作为json值返回,然后用公钥对密码进行加密,最后把表单数据和密码提交给服务器,服务器端用私钥进行密码解密,从而进行登录数据验证!

Using the code

项目结构:


主要用到是js rsa加密(http://www.ohdave.com/rsa/)

由微软工程师改动过,适用于.NET。(为什么这样说呢?因为微软的RSA不是标准算法,而且如果字符串长度为117位以上加密就会分成若干段,标准算法是128位)

function base64encode(str) {
    var base64EncodeChars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
    var base64DecodeChars = new Array(
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1, -1, 63,
    52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -1, -1, -1,
    -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
    15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1,
    -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
    41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1);
    var out, i, len;
    var c1, c2, c3;
    len = str.length;
    i = 0;
    out = "";
    while (i < len) {
        c1 = str.charCodeAt(i++) & 0xff;
        if (i == len) {
            out += base64EncodeChars.charAt(c1 >> 2);
            out += base64EncodeChars.charAt((c1 & 0x3) << 4);
            out += "==";
            break;
        }
        c2 = str.charCodeAt(i++);
        if (i == len) {
            out += base64EncodeChars.charAt(c1 >> 2);
            out += base64EncodeChars.charAt(((c1 & 0x3) << 4) | ((c2 & 0xF0) >> 4));
            out += base64EncodeChars.charAt((c2 & 0xF) << 2);
            out += "=";
            break;
        }
        c3 = str.charCodeAt(i++);
        out += base64EncodeChars.charAt(c1 >> 2);
        out += base64EncodeChars.charAt(((c1 & 0x3) << 4) | ((c2 & 0xF0) >> 4));
        out += base64EncodeChars.charAt(((c2 & 0xF) << 2) | ((c3 & 0xC0) >> 6));
        out += base64EncodeChars.charAt(c3 & 0x3F);
    }
    return out;
}
// BigInt, a suite of routines for performing multiple-precision arithmetic in
// JavaScript.
//
// Copyright 1998-2005 David Shapiro.
//
// You may use, re-use, abuse,
// copy, and modify this code to your liking, but please keep this header.
// Thanks!
//
// Dave Shapiro
// [email protected]

// IMPORTANT THING: Be sure to set maxDigits according to your precision
// needs. Use the setMaxDigits() function to do this. See comments below.
//
// Tweaked by Ian Bunning
// Alterations:
// Fix bug in function biFromHex(s) to allow
// parsing of strings of length != 0 (mod 4)

// Changes made by Dave Shapiro as of 12/30/2004:
//
// The BigInt() constructor doesn't take a string anymore. If you want to
// create a BigInt from a string, use biFromDecimal() for base-10
// representations, biFromHex() for base-16 representations, or
// biFromString() for base-2-to-36 representations.
//
// biFromArray() has been removed. Use biCopy() instead, passing a BigInt
// instead of an array.
//
// The BigInt() constructor now only constructs a zeroed-out array.
// Alternatively, if you pass <true>, it won't construct any array. See the
// biCopy() method for an example of this.
//
// Be sure to set maxDigits depending on your precision needs. The default
// zeroed-out array ZERO_ARRAY is constructed inside the setMaxDigits()
// function. So use this function to set the variable. DON'T JUST SET THE
// VALUE. USE THE FUNCTION.
//
// ZERO_ARRAY exists to hopefully speed up construction of BigInts(). By
// precalculating the zero array, we can just use slice(0) to make copies of
// it. Presumably this calls faster native code, as opposed to setting the
// elements one at a time. I have not done any timing tests to verify this
// claim.

// Max number = 10^16 - 2 = 9999999999999998;
//               2^53     = 9007199254740992;
var biRadixBase = 2;
var biRadixBits = 16;
var bitsPerDigit = biRadixBits;
var biRadix = 1 << 16; // = 2^16 = 65536
var biHalfRadix = biRadix >>> 1;
var biRadixSquared = biRadix * biRadix;
var maxDigitVal = biRadix - 1;
var maxInteger = 9999999999999998;

// maxDigits:
// Change this to accommodate your largest number size. Use setMaxDigits()
// to change it!
//
// In general, if you're working with numbers of size N bits, you'll need 2*N
// bits of storage. Each digit holds 16 bits. So, a 1024-bit key will need
//
// 1024 * 2 / 16 = 128 digits of storage.
//

var maxDigits;
var ZERO_ARRAY;
var bigZero, bigOne;

function setMaxDigits(value) {
    maxDigits = value;
    ZERO_ARRAY = new Array(maxDigits);
    for (var iza = 0; iza < ZERO_ARRAY.length; iza++) ZERO_ARRAY[iza] = 0;
    bigZero = new BigInt();
    bigOne = new BigInt();
    bigOne.digits[0] = 1;
}

setMaxDigits(20);

// The maximum number of digits in base 10 you can convert to an
// integer without JavaScript throwing up on you.
var dpl10 = 15;
// lr10 = 10 ^ dpl10
var lr10 = biFromNumber(1000000000000000);

function BigInt(flag) {
    if (typeof flag == "boolean" && flag == true) {
        this.digits = null;
    }
    else {
        this.digits = ZERO_ARRAY.slice(0);
    }
    this.isNeg = false;
}

function biFromDecimal(s) {
    var isNeg = s.charAt(0) == '-';
    var i = isNeg ? 1 : 0;
    var result;
    // Skip leading zeros.
    while (i < s.length && s.charAt(i) == '0')++i;
    if (i == s.length) {
        result = new BigInt();
    }
    else {
        var digitCount = s.length - i;
        var fgl = digitCount % dpl10;
        if (fgl == 0) fgl = dpl10;
        result = biFromNumber(Number(s.substr(i, fgl)));
        i += fgl;
        while (i < s.length) {
            result = biAdd(biMultiply(result, lr10),
			               biFromNumber(Number(s.substr(i, dpl10))));
            i += dpl10;
        }
        result.isNeg = isNeg;
    }
    return result;
}

function biCopy(bi) {
    var result = new BigInt(true);
    result.digits = bi.digits.slice(0);
    result.isNeg = bi.isNeg;
    return result;
}

function biFromNumber(i) {
    var result = new BigInt();
    result.isNeg = i < 0;
    i = Math.abs(i);
    var j = 0;
    while (i > 0) {
        result.digits[j++] = i & maxDigitVal;
        i = Math.floor(i / biRadix);
    }
    return result;
}

function reverseStr(s) {
    var result = "";
    for (var i = s.length - 1; i > -1; --i) {
        result += s.charAt(i);
    }
    return result;
}

var hexatrigesimalToChar = new Array(
 '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
 'u', 'v', 'w', 'x', 'y', 'z'
);

function biToString(x, radix)
    // 2 <= radix <= 36
{
    var b = new BigInt();
    b.digits[0] = radix;
    var qr = biDivideModulo(x, b);
    var result = hexatrigesimalToChar[qr[1].digits[0]];
    while (biCompare(qr[0], bigZero) == 1) {
        qr = biDivideModulo(qr[0], b);
        digit = qr[1].digits[0];
        result += hexatrigesimalToChar[qr[1].digits[0]];
    }
    return (x.isNeg ? "-" : "") + reverseStr(result);
}

function biToDecimal(x) {
    var b = new BigInt();
    b.digits[0] = 10;
    var qr = biDivideModulo(x, b);
    var result = String(qr[1].digits[0]);
    while (biCompare(qr[0], bigZero) == 1) {
        qr = biDivideModulo(qr[0], b);
        result += String(qr[1].digits[0]);
    }
    return (x.isNeg ? "-" : "") + reverseStr(result);
}

var hexToChar = new Array('0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
                          'a', 'b', 'c', 'd', 'e', 'f');

function digitToHex(n) {
    var mask = 0xf;
    var result = "";
    for (i = 0; i < 4; ++i) {
        result += hexToChar[n & mask];
        n >>>= 4;
    }
    return reverseStr(result);
}

function biToHex(x) {
    var result = "";
    var n = biHighIndex(x);
    for (var i = biHighIndex(x) ; i > -1; --i) {
        result += digitToHex(x.digits[i]);
    }
    return result;
}

function charToHex(c) {
    var ZERO = 48;
    var NINE = ZERO + 9;
    var littleA = 97;
    var littleZ = littleA + 25;
    var bigA = 65;
    var bigZ = 65 + 25;
    var result;

    if (c >= ZERO && c <= NINE) {
        result = c - ZERO;
    } else if (c >= bigA && c <= bigZ) {
        result = 10 + c - bigA;
    } else if (c >= littleA && c <= littleZ) {
        result = 10 + c - littleA;
    } else {
        result = 0;
    }
    return result;
}

function hexToDigit(s) {
    var result = 0;
    var sl = Math.min(s.length, 4);
    for (var i = 0; i < sl; ++i) {
        result <<= 4;
        result |= charToHex(s.charCodeAt(i))
    }
    return result;
}

function biFromHex(s) {
    var result = new BigInt();
    var sl = s.length;
    for (var i = sl, j = 0; i > 0; i -= 4, ++j) {
        result.digits[j] = hexToDigit(s.substr(Math.max(i - 4, 0), Math.min(i, 4)));
    }
    return result;
}

function biFromString(s, radix) {
    var isNeg = s.charAt(0) == '-';
    var istop = isNeg ? 1 : 0;
    var result = new BigInt();
    var place = new BigInt();
    place.digits[0] = 1; // radix^0
    for (var i = s.length - 1; i >= istop; i--) {
        var c = s.charCodeAt(i);
        var digit = charToHex(c);
        var biDigit = biMultiplyDigit(place, digit);
        result = biAdd(result, biDigit);
        place = biMultiplyDigit(place, radix);
    }
    result.isNeg = isNeg;
    return result;
}

function biDump(b) {
    return (b.isNeg ? "-" : "") + b.digits.join(" ");
}

function biAdd(x, y) {
    var result;

    if (x.isNeg != y.isNeg) {
        y.isNeg = !y.isNeg;
        result = biSubtract(x, y);
        y.isNeg = !y.isNeg;
    }
    else {
        result = new BigInt();
        var c = 0;
        var n;
        for (var i = 0; i < x.digits.length; ++i) {
            n = x.digits[i] + y.digits[i] + c;
            result.digits[i] = n % biRadix;
            c = Number(n >= biRadix);
        }
        result.isNeg = x.isNeg;
    }
    return result;
}

function biSubtract(x, y) {
    var result;
    if (x.isNeg != y.isNeg) {
        y.isNeg = !y.isNeg;
        result = biAdd(x, y);
        y.isNeg = !y.isNeg;
    } else {
        result = new BigInt();
        var n, c;
        c = 0;
        for (var i = 0; i < x.digits.length; ++i) {
            n = x.digits[i] - y.digits[i] + c;
            result.digits[i] = n % biRadix;
            // Stupid non-conforming modulus operation.
            if (result.digits[i] < 0) result.digits[i] += biRadix;
            c = 0 - Number(n < 0);
        }
        // Fix up the negative sign, if any.
        if (c == -1) {
            c = 0;
            for (var i = 0; i < x.digits.length; ++i) {
                n = 0 - result.digits[i] + c;
                result.digits[i] = n % biRadix;
                // Stupid non-conforming modulus operation.
                if (result.digits[i] < 0) result.digits[i] += biRadix;
                c = 0 - Number(n < 0);
            }
            // Result is opposite sign of arguments.
            result.isNeg = !x.isNeg;
        } else {
            // Result is same sign.
            result.isNeg = x.isNeg;
        }
    }
    return result;
}

function biHighIndex(x) {
    var result = x.digits.length - 1;
    while (result > 0 && x.digits[result] == 0)--result;
    return result;
}

function biNumBits(x) {
    var n = biHighIndex(x);
    var d = x.digits[n];
    var m = (n + 1) * bitsPerDigit;
    var result;
    for (result = m; result > m - bitsPerDigit; --result) {
        if ((d & 0x8000) != 0) break;
        d <<= 1;
    }
    return result;
}

function biMultiply(x, y) {
    var result = new BigInt();
    var c;
    var n = biHighIndex(x);
    var t = biHighIndex(y);
    var u, uv, k;

    for (var i = 0; i <= t; ++i) {
        c = 0;
        k = i;
        for (j = 0; j <= n; ++j, ++k) {
            uv = result.digits[k] + x.digits[j] * y.digits[i] + c;
            result.digits[k] = uv & maxDigitVal;
            c = uv >>> biRadixBits;
            //c = Math.floor(uv / biRadix);
        }
        result.digits[i + n + 1] = c;
    }
    // Someone give me a logical xor, please.
    result.isNeg = x.isNeg != y.isNeg;
    return result;
}

function biMultiplyDigit(x, y) {
    var n, c, uv;

    result = new BigInt();
    n = biHighIndex(x);
    c = 0;
    for (var j = 0; j <= n; ++j) {
        uv = result.digits[j] + x.digits[j] * y + c;
        result.digits[j] = uv & maxDigitVal;
        c = uv >>> biRadixBits;
        //c = Math.floor(uv / biRadix);
    }
    result.digits[1 + n] = c;
    return result;
}

function arrayCopy(src, srcStart, dest, destStart, n) {
    var m = Math.min(srcStart + n, src.length);
    for (var i = srcStart, j = destStart; i < m; ++i, ++j) {
        dest[j] = src[i];
    }
}

var highBitMasks = new Array(0x0000, 0x8000, 0xC000, 0xE000, 0xF000, 0xF800,
                             0xFC00, 0xFE00, 0xFF00, 0xFF80, 0xFFC0, 0xFFE0,
                             0xFFF0, 0xFFF8, 0xFFFC, 0xFFFE, 0xFFFF);

function biShiftLeft(x, n) {
    var digitCount = Math.floor(n / bitsPerDigit);
    var result = new BigInt();
    arrayCopy(x.digits, 0, result.digits, digitCount,
	          result.digits.length - digitCount);
    var bits = n % bitsPerDigit;
    var rightBits = bitsPerDigit - bits;
    for (var i = result.digits.length - 1, i1 = i - 1; i > 0; --i, --i1) {
        result.digits[i] = ((result.digits[i] << bits) & maxDigitVal) |
		                   ((result.digits[i1] & highBitMasks[bits]) >>>
		                    (rightBits));
    }
    result.digits[0] = ((result.digits[i] << bits) & maxDigitVal);
    result.isNeg = x.isNeg;
    return result;
}

var lowBitMasks = new Array(0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F,
                            0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF,
                            0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF);

function biShiftRight(x, n) {
    var digitCount = Math.floor(n / bitsPerDigit);
    var result = new BigInt();
    arrayCopy(x.digits, digitCount, result.digits, 0,
	          x.digits.length - digitCount);
    var bits = n % bitsPerDigit;
    var leftBits = bitsPerDigit - bits;
    for (var i = 0, i1 = i + 1; i < result.digits.length - 1; ++i, ++i1) {
        result.digits[i] = (result.digits[i] >>> bits) |
		                   ((result.digits[i1] & lowBitMasks[bits]) << leftBits);
    }
    result.digits[result.digits.length - 1] >>>= bits;
    result.isNeg = x.isNeg;
    return result;
}

function biMultiplyByRadixPower(x, n) {
    var result = new BigInt();
    arrayCopy(x.digits, 0, result.digits, n, result.digits.length - n);
    return result;
}

function biDivideByRadixPower(x, n) {
    var result = new BigInt();
    arrayCopy(x.digits, n, result.digits, 0, result.digits.length - n);
    return result;
}

function biModuloByRadixPower(x, n) {
    var result = new BigInt();
    arrayCopy(x.digits, 0, result.digits, 0, n);
    return result;
}

function biCompare(x, y) {
    if (x.isNeg != y.isNeg) {
        return 1 - 2 * Number(x.isNeg);
    }
    for (var i = x.digits.length - 1; i >= 0; --i) {
        if (x.digits[i] != y.digits[i]) {
            if (x.isNeg) {
                return 1 - 2 * Number(x.digits[i] > y.digits[i]);
            } else {
                return 1 - 2 * Number(x.digits[i] < y.digits[i]);
            }
        }
    }
    return 0;
}

function biDivideModulo(x, y) {
    var nb = biNumBits(x);
    var tb = biNumBits(y);
    var origYIsNeg = y.isNeg;
    var q, r;
    if (nb < tb) {
        // |x| < |y|
        if (x.isNeg) {
            q = biCopy(bigOne);
            q.isNeg = !y.isNeg;
            x.isNeg = false;
            y.isNeg = false;
            r = biSubtract(y, x);
            // Restore signs, 'cause they're references.
            x.isNeg = true;
            y.isNeg = origYIsNeg;
        } else {
            q = new BigInt();
            r = biCopy(x);
        }
        return new Array(q, r);
    }

    q = new BigInt();
    r = x;

    // Normalize Y.
    var t = Math.ceil(tb / bitsPerDigit) - 1;
    var lambda = 0;
    while (y.digits[t] < biHalfRadix) {
        y = biShiftLeft(y, 1);
        ++lambda;
        ++tb;
        t = Math.ceil(tb / bitsPerDigit) - 1;
    }
    // Shift r over to keep the quotient constant. We'll shift the
    // remainder back at the end.
    r = biShiftLeft(r, lambda);
    nb += lambda; // Update the bit count for x.
    var n = Math.ceil(nb / bitsPerDigit) - 1;

    var b = biMultiplyByRadixPower(y, n - t);
    while (biCompare(r, b) != -1) {
        ++q.digits[n - t];
        r = biSubtract(r, b);
    }
    for (var i = n; i > t; --i) {
        var ri = (i >= r.digits.length) ? 0 : r.digits[i];
        var ri1 = (i - 1 >= r.digits.length) ? 0 : r.digits[i - 1];
        var ri2 = (i - 2 >= r.digits.length) ? 0 : r.digits[i - 2];
        var yt = (t >= y.digits.length) ? 0 : y.digits[t];
        var yt1 = (t - 1 >= y.digits.length) ? 0 : y.digits[t - 1];
        if (ri == yt) {
            q.digits[i - t - 1] = maxDigitVal;
        } else {
            q.digits[i - t - 1] = Math.floor((ri * biRadix + ri1) / yt);
        }

        var c1 = q.digits[i - t - 1] * ((yt * biRadix) + yt1);
        var c2 = (ri * biRadixSquared) + ((ri1 * biRadix) + ri2);
        while (c1 > c2) {
            --q.digits[i - t - 1];
            c1 = q.digits[i - t - 1] * ((yt * biRadix) | yt1);
            c2 = (ri * biRadix * biRadix) + ((ri1 * biRadix) + ri2);
        }

        b = biMultiplyByRadixPower(y, i - t - 1);
        r = biSubtract(r, biMultiplyDigit(b, q.digits[i - t - 1]));
        if (r.isNeg) {
            r = biAdd(r, b);
            --q.digits[i - t - 1];
        }
    }
    r = biShiftRight(r, lambda);
    // Fiddle with the signs and stuff to make sure that 0 <= r < y.
    q.isNeg = x.isNeg != origYIsNeg;
    if (x.isNeg) {
        if (origYIsNeg) {
            q = biAdd(q, bigOne);
        } else {
            q = biSubtract(q, bigOne);
        }
        y = biShiftRight(y, lambda);
        r = biSubtract(y, r);
    }
    // Check for the unbelievably stupid degenerate case of r == -0.
    if (r.digits[0] == 0 && biHighIndex(r) == 0) r.isNeg = false;

    return new Array(q, r);
}

function biDivide(x, y) {
    return biDivideModulo(x, y)[0];
}

function biModulo(x, y) {
    return biDivideModulo(x, y)[1];
}

function biMultiplyMod(x, y, m) {
    return biModulo(biMultiply(x, y), m);
}

function biPow(x, y) {
    var result = bigOne;
    var a = x;
    while (true) {
        if ((y & 1) != 0) result = biMultiply(result, a);
        y >>= 1;
        if (y == 0) break;
        a = biMultiply(a, a);
    }
    return result;
}

function biPowMod(x, y, m) {
    var result = bigOne;
    var a = x;
    var k = y;
    while (true) {
        if ((k.digits[0] & 1) != 0) result = biMultiplyMod(result, a, m);
        k = biShiftRight(k, 1);
        if (k.digits[0] == 0 && biHighIndex(k) == 0) break;
        a = biMultiplyMod(a, a, m);
    }
    return result;
}


// BarrettMu, a class for performing Barrett modular reduction computations in
// JavaScript.
//
// Requires BigInt.js.
//
// Copyright 2004-2005 David Shapiro.
//
// You may use, re-use, abuse, copy, and modify this code to your liking, but
// please keep this header.
//
// Thanks!
// 
// Dave Shapiro
// [email protected] 
function BarrettMu(m) {
    this.modulus = biCopy(m);
    this.k = biHighIndex(this.modulus) + 1;
    var b2k = new BigInt();
    b2k.digits[2 * this.k] = 1; // b2k = b^(2k)
    this.mu = biDivide(b2k, this.modulus);
    this.bkplus1 = new BigInt();
    this.bkplus1.digits[this.k + 1] = 1; // bkplus1 = b^(k+1)
    this.modulo = BarrettMu_modulo;
    this.multiplyMod = BarrettMu_multiplyMod;
    this.powMod = BarrettMu_powMod;
}

function BarrettMu_modulo(x) {
    var q1 = biDivideByRadixPower(x, this.k - 1);
    var q2 = biMultiply(q1, this.mu);
    var q3 = biDivideByRadixPower(q2, this.k + 1);
    var r1 = biModuloByRadixPower(x, this.k + 1);
    var r2term = biMultiply(q3, this.modulus);
    var r2 = biModuloByRadixPower(r2term, this.k + 1);
    var r = biSubtract(r1, r2);
    if (r.isNeg) {
        r = biAdd(r, this.bkplus1);
    }
    var rgtem = biCompare(r, this.modulus) >= 0;
    while (rgtem) {
        r = biSubtract(r, this.modulus);
        rgtem = biCompare(r, this.modulus) >= 0;
    }
    return r;
}

function BarrettMu_multiplyMod(x, y) {
    /*
	x = this.modulo(x);
	y = this.modulo(y);
	*/
    var xy = biMultiply(x, y);
    return this.modulo(xy);
}

function BarrettMu_powMod(x, y) {
    var result = new BigInt();
    result.digits[0] = 1;
    var a = x;
    var k = y;
    while (true) {
        if ((k.digits[0] & 1) != 0) result = this.multiplyMod(result, a);
        k = biShiftRight(k, 1);
        if (k.digits[0] == 0 && biHighIndex(k) == 0) break;
        a = this.multiplyMod(a, a);
    }
    return result;
}

// RSA, a suite of routines for performing RSA public-key computations in JavaScript.
// Copyright 1998-2005 David Shapiro.
// You may use, re-use, abuse, copy, and modify this code to your liking, but
// please keep this header.Thanks!
// Dave Shapiro
// [email protected] 
function RSAKeyPair(encryptionExponent, decryptionExponent, modulus) {
    this.e = biFromHex(encryptionExponent);
    this.d = biFromHex(decryptionExponent);
    this.m = biFromHex(modulus);

    // We can do two bytes per digit, so
    // chunkSize = 2 * (number of digits in modulus - 1).
    // Since biHighIndex returns the high index, not the number of digits, 1 has
    // already been subtracted.
    //this.chunkSize = 2 * biHighIndex(this.m);

    ////////////////////////////////// TYF
    this.digitSize = 2 * biHighIndex(this.m) + 2;
    this.chunkSize = this.digitSize - 11; // maximum, anything lower is fine
    ////////////////////////////////// TYF

    this.radix = 16;
    this.barrett = new BarrettMu(this.m);
}

function twoDigit(n) {
    return (n < 10 ? "0" : "") + String(n);
}

function encryptedString(key, s)
    // Altered by Rob Saunders ([email protected]). New routine pads the
    // string after it has been converted to an array. This fixes an
    // incompatibility with Flash MX's ActionScript.
    // Altered by Tang Yu Feng for interoperability with Microsoft's
    // RSACryptoServiceProvider implementation.
{
    ////////////////////////////////// TYF
    if (key.chunkSize > key.digitSize - 11) {
        return "Error";
    }
    ////////////////////////////////// TYF


    var a = new Array();
    var sl = s.length;

    var i = 0;
    while (i < sl) {
        a[i] = s.charCodeAt(i);
        i++;
    }

    //while (a.length % key.chunkSize != 0) {
    //	a[i++] = 0;
    //}

    var al = a.length;
    var result = "";
    var j, k, block;
    for (i = 0; i < al; i += key.chunkSize) {
        block = new BigInt();
        j = 0;

        //for (k = i; k < i + key.chunkSize; ++j) {
        //	block.digits[j] = a[k++];
        //	block.digits[j] += a[k++] << 8;
        //}

        ////////////////////////////////// TYF
        // Add PKCS#1 v1.5 padding
        // 0x00 || 0x02 || PseudoRandomNonZeroBytes || 0x00 || Message
        // Variable a before padding must be of at most digitSize-11
        // That is for 3 marker bytes plus at least 8 random non-zero bytes
        var x;
        var msgLength = (i + key.chunkSize) > al ? al % key.chunkSize : key.chunkSize;

        // Variable b with 0x00 || 0x02 at the highest index.
        var b = new Array();
        for (x = 0; x < msgLength; x++) {
            b[x] = a[i + msgLength - 1 - x];
        }
        b[msgLength] = 0; // marker
        var paddedSize = Math.max(8, key.digitSize - 3 - msgLength);

        for (x = 0; x < paddedSize; x++) {
            b[msgLength + 1 + x] = Math.floor(Math.random() * 254) + 1; // [1,255]
        }
        // It can be asserted that msgLength+paddedSize == key.digitSize-3
        b[key.digitSize - 2] = 2; // marker
        b[key.digitSize - 1] = 0; // marker

        for (k = 0; k < key.digitSize; ++j) {
            block.digits[j] = b[k++];
            block.digits[j] += b[k++] << 8;
        }
        ////////////////////////////////// TYF

        var crypt = key.barrett.powMod(block, key.e);
        var text = key.radix == 16 ? biToHex(crypt) : biToString(crypt, key.radix);
        result += text + " ";
    }
    return result.substring(0, result.length - 1); // Remove last space.
}

function decryptedString(key, s) {
    // Altered by caozhiyuan ([email protected])  compatibility with Microsoft's
    // RSACryptoServiceProvider
    var blocks = s.split(" ");
    var result = "";
    var i, j, block;
    for (i = 0; i < blocks.length; ++i) {
        var bi;
        if (key.radix == 16) {
            bi = biFromHex(blocks[i]);
        }
        else {
            bi = biFromString(blocks[i], key.radix);
        }
        block = key.barrett.powMod(bi, key.d);
        for (j = 0; j <= biHighIndex(block) ; ++j) {
            //////////////////////////////////CZHY
            var s1 = block.digits[j] & 255;
            if (s1 != 0) {
                result += String.fromCharCode(s1);
            } else {
                break;  //if it's marker, break
            }
            var s2 = block.digits[j] >> 8;
            if (s2 != 0) {
                result += String.fromCharCode(s2);
            } else {
                break;  //if it's marker, break
            }
            //////////////////////////////////CZHY
            //result += String.fromCharCode(block.digits[j] & 255,
			//                              block.digits[j] >> 8);
        }
    }
    // Remove trailing null, if any.
    //if (result.charCodeAt(result.length - 1) == 0) {
    //    result = result.substring(0, result.length - 1);
    //}
    //return result;
    //////////////////////////////////CZHY
    var i = result.length;
    var dstr = "";
    while (--i >= 0) {
        dstr += result.charAt(i);
    }
    return dstr;
    //////////////////////////////////CZHY
}

 
 
 
 

下面是jquery validate验证表单成功后的提交事件:

  submitHandler: function (form) {
                    var token = $("input[name='__RequestVerificationToken']").val();
                    var username = $('#username').val();
                    $.ajax({
                        type: "POST",
                        url: "/Account/GetPulicKey",
                        data: { 'username': username, '__RequestVerificationToken': token },
                        dataType: 'json',
                        beforeSend: function () {
                            $("#subbtn").button('loading');
                        },
                        success: function (response, textStatus, jqXHR) {
                            setMaxDigits(131);
                            var key = new RSAKeyPair(response.Exponent, "", response.Modulus);
                            $.ajax({
                                data: { 'username': username, 'password': encryptedString(key, base64encode($('#password').val())), 'rememberpassword': $('#rememberpassword').is(':checked'), '__RequestVerificationToken': token },
                                type: "POST",
                                url: "/Account/Login",
                                dataType: 'json',
                                success: function (response, textStatus, jqXHR) {
                                    $("#subbtn").button('reset');
                                    if (response.message == 'success') {
                                        window.location.href = $("#returnurl").val().toLowerCase();
                                    } else if (response.data) {
                                        alert(response.data);
                                    }
                                },
                                error: function (xhr, textStatus, errorThrown) {
                                    alert("error");
                                }
                            });
                        },
                        error: function (xhr, textStatus, errorThrown) {
                            alert("error");
                        }
                    });
                    return false;
                }

后台:

  [HttpPost]
        [ValidateAntiForgeryToken]
        public ActionResult GetPulicKey(string username)
        {
            if (!String.IsNullOrEmpty(username))
            {
                RSACrypto rsa = new RSACrypto();
                RSAParameters param;
                GetKey.GetKeyFunction(username);
                string path = System.Web.HttpContext.Current.Session["key"].ToString() + "_private.xml";
                rsa.InitCrypto(Server.MapPath("~/Key/") + path);
                param = rsa.ExportParameters(true);
                return Json(new { Exponent = StringHelper.BytesToHexString(param.Exponent), Modulus = StringHelper.BytesToHexString(param.Modulus) });
            }
            else 
            {
                return Json("参数错误");
            }
        }

        [HttpPost]
        [ValidateAntiForgeryToken]
        public ActionResult Login(string username, string password, bool rememberpassword)
        {
            RSACrypto rsa = new RSACrypto();
            RSAParameters param;
            string path = System.Web.HttpContext.Current.Session["key"].ToString() + "_private.xml";
            rsa.InitCrypto(Server.MapPath("~/Key/") + path);
            param = rsa.ExportParameters(true);
            password = StringHelper.ASCIIBytesToString(StringHelper.FromBase64(StringHelper.ASCIIBytesToString(rsa.Decrypt(StringHelper.HexStringToBytes(password)))));
            LoginModel loginModel = new LoginModel { UserName = username, Password = password, RememberPassword = rememberpassword };
            LoginModelValidate userValidation = new LoginModelValidate();
            ValidationResult validationResult = userValidation.Validate(loginModel);
            string Msg = "";
            if (!validationResult.IsValid)
            {
                foreach (var failure in validationResult.Errors)
                {
                    Msg += "Property " + failure.PropertyName + " failed validation. Error was: " + failure.ErrorMessage;
                }
                return Json(new { message = "Error", data = Msg });
            }
            if (loginModel.UserName == "admin" && loginModel.Password == "123456")
            {
                var PersistentCookie = loginModel.RememberPassword;
                FormAuthService.SignIn(loginModel.UserName, PersistentCookie, new string[] { "user" });
                return Json(new { message = "success" });
            }
            else 
            {
                return Json(new { message = "Error", data = "用户名或密码错误" });
            }
        }


using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Security.Cryptography;
using System.Text;
using System.Web;

namespace RSACryptoDemo.RSA
{
    public class GetKey
    {
        public GetKey()
        {
        }

        public static void GetKeyFunction(string username)
        {
            string keyFileName = System.Web.HttpContext.Current.Server.MapPath("~/Key/");
            const int keySize = 1024;

            RSACryptoServiceProvider sp = new RSACryptoServiceProvider(keySize);

            string str = sp.ToXmlString(true);
            string KeyXml = username +"_"+ Guid.NewGuid().ToString();
            System.Web.HttpContext.Current.Session["key"] = KeyXml;
            TextWriter writer = new StreamWriter(keyFileName + KeyXml + "_private.xml");
            writer.Write(str);
            writer.Close();

            str = sp.ToXmlString(false);
            writer = new StreamWriter(keyFileName + KeyXml + "_public.xml");
            writer.Write(str);
            writer.Close();
        }
    }

    public class RSACrypto
    {
        private RSACryptoServiceProvider _sp;

        public RSAParameters ExportParameters(bool includePrivateParameters)
        {
            return _sp.ExportParameters(includePrivateParameters);
        }

        public void InitCrypto(string keyFileName)
        {
            CspParameters cspParams = new CspParameters();
            cspParams.Flags = CspProviderFlags.UseMachineKeyStore;
            // To avoid repeated costly key pair generation
            _sp = new RSACryptoServiceProvider(cspParams);
            string path = keyFileName;
            System.IO.StreamReader reader = new StreamReader(path);
            string data = reader.ReadToEnd();
            _sp.FromXmlString(data);
        }

        public byte[] Encrypt(string txt)
        {
            byte[] result;

            ASCIIEncoding enc = new ASCIIEncoding();
            byte[] tempArray = enc.GetBytes(txt);
            result = _sp.Encrypt(tempArray, false);

            return result;
        }

        public byte[] Decrypt(byte[] txt)
        {
            byte[] result;
            result = _sp.Decrypt(txt, false);
            return result;
        }
    }

    public class StringHelper
    {
        public static byte[] HexStringToBytes(string hex)
        {
            if (hex.Length == 0)
            {
                return new byte[] { 0 };
            }

            if (hex.Length % 2 == 1)
            {
                hex = "0" + hex;
            }

            byte[] result = new byte[hex.Length / 2];

            for (int i = 0; i < hex.Length / 2; i++)
            {
                result[i] = byte.Parse(hex.Substring(2 * i, 2), System.Globalization.NumberStyles.AllowHexSpecifier);
            }

            return result;
        }

        public static string BytesToHexString(byte[] input)
        {
            StringBuilder hexString = new StringBuilder(64);

            for (int i = 0; i < input.Length; i++)
            {
                hexString.Append(String.Format("{0:X2}", input[i]));
            }
            return hexString.ToString();
        }

        public static string BytesToDecString(byte[] input)
        {
            StringBuilder decString = new StringBuilder(64);

            for (int i = 0; i < input.Length; i++)
            {
                decString.Append(String.Format(i == 0 ? "{0:D3}" : "-{0:D3}", input[i]));
            }
            return decString.ToString();
        }

        // Bytes are string
        public static string ASCIIBytesToString(byte[] input)
        {
            System.Text.ASCIIEncoding enc = new ASCIIEncoding();
            return enc.GetString(input);
        }
        public static string UTF16BytesToString(byte[] input)
        {
            System.Text.UnicodeEncoding enc = new UnicodeEncoding();
            return enc.GetString(input);
        }
        public static string UTF8BytesToString(byte[] input)
        {
            System.Text.UTF8Encoding enc = new UTF8Encoding();
            return enc.GetString(input);
        }

        // Base64
        public static string ToBase64(byte[] input)
        {
            return Convert.ToBase64String(input);
        }

        public static byte[] FromBase64(string base64)
        {
            return Convert.FromBase64String(base64);
        }
    }
}


效果:


History

  • 06/12/2013: First version.

猜你喜欢

转载自blog.csdn.net/zhuankeshumo/article/details/17151859