Java并发包中CyclicBarrier的源码分析和使用

CyclicBarrier的介绍和源码分析
CyclicBarrier的字母意思是可循环(Cyclic)使用的屏障(Barrier)。它要做的事情是,让一组线程到达一个屏障(也可以叫做同步点)时被阻塞,直到最后一个线程到达屏障,屏障才会开门,所有被屏障拦截的线程才会继续干活。 线程进入屏障通过CyclicBarrier的await()方法。
 
CyclicBarrier默认的构造方法是CyclicBarrier(int parties)。其参数表示屏障拦截的线程数量,每个线程调用await方法告诉CyclicBarrier我已经到达屏障,然后当前线程被阻塞。
 
CyclicBarrier还提供一个更高级的构造函数CyclicBarrier(int parties,Runnable barrier Action),用于在线程到达屏障时,优先执行barrier Action这个Runnable对象,方便处理更复杂的业务场景。
 
 public CyclicBarrier(int parties) {
        this(parties, null);
    }
 
 public CyclicBarrier(int parties, Runnable barrierAction) {
        if (parties <= 0) throw new IllegalArgumentException();
        this.parties = parties;
        this.count = parties;
        this.barrierCommand = barrierAction;
    }
 
实现原理,在CyclicBarrier的内部定义了一个Lock对象(ReentrantLock),每当一个线程调用CyclicBarrier的await()方法时,将剩余拦截的线程数减一,然后判断剩余拦截数是否为0,如果不是,进入Lock对象的条件队列等待。如果是,执行barrierAction对象的Runnable方法,然后将所的条件队列中的所有线程放入锁等待队列中,这些线程会依次获取锁,释放锁,接着先从await()方法返回,在从CyclicBarrier的await()方法返回。
 
/** The lock for guarding barrier entry */
    private final ReentrantLock lock = new ReentrantLock();
 
await()源码:
 
public int await() throws InterruptedException, BrokenBarrierException {
        try {
            return dowait(false, 0L);
        } catch (TimeoutException toe) {
            throw new Error(toe); // cannot happen
        }
    }
dowait源码:
 
/**
     * Main barrier code, covering the various policies.
     */
    private int dowait(boolean timed, long nanos)
        throws InterruptedException, BrokenBarrierException,
               TimeoutException {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            final Generation g = generation;
            if (g.broken)
                throw new BrokenBarrierException();
            if (Thread.interrupted()) {
                breakBarrier();
                throw new InterruptedException();
            }
            int index = --count;
            if (index == 0) {  // tripped
                boolean ranAction = false;
                try {
                    final Runnable command = barrierCommand;
                    if (command != null)
                        command.run();
                    ranAction = true;
                    nextGeneration();
                    return 0;
                } finally {
                    if (!ranAction)
                        breakBarrier();
                }
            }
            // loop until tripped, broken, interrupted, or timed out
            for (;;) {
                try {
                    if (!timed)
                        trip.await();
                    else if (nanos > 0L)
                        nanos = trip.awaitNanos(nanos);
                } catch (InterruptedException ie) {
                    if (g == generation && ! g.broken) {
                        breakBarrier();
                        throw ie;
                    } else {
                        // We're about to finish waiting even if we had not
                        // been interrupted, so this interrupt is deemed to
                        // "belong" to subsequent execution.
                        Thread.currentThread().interrupt();
                    }
                }
                if (g.broken)
                    throw new BrokenBarrierException();
                if (g != generation)
                    return index;
                if (timed && nanos <= 0L) {
                    breakBarrier();
                    throw new TimeoutException();
                }
            }
        } finally {
            lock.unlock();
        }
    }
 
 
 
  private void nextGeneration() {
        // signal completion of last generation
        trip.signalAll();
        // set up next generation
        count = parties;
        generation = new Generation();
    }
    /**
     * Sets current barrier generation as broken and wakes up everyone.
     * Called only while holding lock.
     */
    private void breakBarrier() {
        generation.broken = true;
        count = parties;
        trip.signalAll();
    }
 
nextGeneration和breakBarrier方法都可以停止阻塞。
CyclicBarrier主要用于一组线程之间的相互等待,而CountDownLatch一般用于一组线程等待另一组线程。实际上可以通过CountDownLatch的countDown()和await()来实现CyclicBarrier的功能。
即CountDownLatch中的countDown()和await() = CyclicBarrier中的await()。注意在一个线程中先调用countDown()再调用await()
 
CyclicBarrier对象可以重复使用,重用之前应当调用CyclicBarrier的reset方法:
 
    public void reset() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            breakBarrier();   // break the current generation
            nextGeneration(); // start a new generation
        } finally {
            lock.unlock();
        }
    }
CyclicBarrier使用:
 
package com.fpc.Test;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.Random;
public class CyclicBarrierTest {
     private CyclicBarrier cyclicBarrier = new CyclicBarrier(4);
     private Random rnd = new Random();
     
     class taskDemo implements Runnable{
           private String taskId;
           
           public taskDemo( String taskId ) {
                this.taskId = taskId;
           }
           
           @Override
           public void run() {
                try {
                     int time = rnd.nextInt(1000);
                     Thread.sleep(time);
                     System.out.println(" Thread : " + taskId + " sleep : " + time + "ms");
                     try {
                           cyclicBarrier.await();
                           System.out.println(" Thread : " + taskId + " sleep is over");
                     } catch (BrokenBarrierException e) {
                           // TODO Auto-generated catch block
                           e.printStackTrace();
                     }
                } catch (InterruptedException e) {
                     // TODO Auto-generated catch block
                     e.printStackTrace();
                }
           }
     }
//   CyclicBarrier cyclicBarrier = new CyclicBarrier();
     public static void main( String[] args ) {
           CyclicBarrierTest c = new CyclicBarrierTest();
           
           ExecutorService pool = Executors.newCachedThreadPool();
           pool.submit(c.new taskDemo("1"));
           pool.submit(c.new taskDemo("2"));
           pool.submit(c.new taskDemo("3"));
           pool.submit(c.new taskDemo("4"));
     }
}
运行结果:
 
 Thread : 1 sleep : 102ms
 Thread : 3 sleep : 254ms
 Thread : 4 sleep : 394ms
 Thread : 2 sleep : 943ms
 Thread : 2 sleep is over
 Thread : 1 sleep is over
 Thread : 4 sleep is over
 Thread : 3 sleep is over
 
如果构造CyclicBarrier时,给传的大小是5,但是你进入屏障的线程数只有4个,那么会发生什么现象?
这些4个线程都无法结束,因为CyclicBarrier还在等待第5个线程结束,但此时根本没有第5个线程,所以之前的4个线程根本无法结束。
 Thread : 3 sleep : 166ms
 Thread : 4 sleep : 281ms
 Thread : 2 sleep : 444ms
 Thread : 1 sleep : 776ms
那么如果构造CyclicBarrier时,给传递的参数是3呢,但此时有4个线程进入屏障呢?
结果是其中三个线程会执行然后结束,第四个线程永远无法结束,这是因为CyclicBarrier是可以循环利用的。
执行结果:
 Thread : 3 sleep : 500ms
 Thread : 1 sleep : 567ms
 Thread : 2 sleep : 912ms
 Thread : 2 sleep is over
 Thread : 3 sleep is over
 Thread : 1 sleep is over
 Thread : 4 sleep : 988ms
 
 
 
 

猜你喜欢

转载自www.cnblogs.com/fangpengchengbupter/p/9293600.html
今日推荐