内存泄露及其检测

1.内存泄漏的定义 

   一般我们常说的内存泄漏是指堆内存的泄漏。堆内存是指程序从堆中分配的,大小任意的(内存块的大小可以在程序运行期决定),使用完后必须显示释放的内存。应用程序一般使用malloc,realloc,new等函数从堆中分配到一块内存,使用完后,程序必须负责相应的调用free或delete释放该内存块,否则,这块内存就不能被再次使用,我们就说这块内存泄漏了。

示例一:

以下这段小程序演示了堆内存发生泄漏的情形:

void MyFunction(int nSize)
{
 char* p= new char[nSize];
 if( !GetStringFrom( p, nSize ) ){
  MessageBox(“Error”);
  return;
 }
 …//using the string pointed by p;
 delete p;
}

  当函数GetStringFrom()返回零的时候,指针p指向的内存就不会被释放。这是一种常见的发生内存泄漏的情形。程序在入口处分配内存,在出口处释放内存,但是c函数可以在任何地方退出,所以一旦有某个出口处没有释放应该释放的内存,就会发生内存泄漏。广义的说,内存泄漏不仅仅包含堆内存的泄漏,还包含系统资源的泄漏(resource leak),比如核心态HANDLE,GDI Object,SOCKET, Interface等,从根本上说这些由操作系统分配的对象也消耗内存,如果这些对象发生泄漏最终也会导致内存的泄漏。而且,某些对象消耗的是核心态内存,这些对象严重泄漏时会导致整个操作系统不稳定。所以相比之下,系统资源的泄漏比堆内存的泄漏更为严重。

示例二:

void CMyView::OnPaint( CDC* pDC )
{
 CBitmap bmp;
 CBitmap* pOldBmp;
 bmp.LoadBitmap(IDB_MYBMP);
 pOldBmp = pDC->SelectObject( &bmp );
 …
 if( Something() ){
  return;
 }
 pDC->SelectObject( pOldBmp );
 return;
}

    当函数Something()返回非零的时候,程序在退出前没有把pOldBmp选回pDC中,这会导致pOldBmp指向的HBITMAP对象发生泄 漏。这个程序如果长时间的运行,可能会导致整个系统花屏。这种问题在Win9x下比较容易暴露出来,因为Win9x的GDI堆比Win2k或NT的要小很多。

示例三:

char* g_lpszFileName = NULL;

void SetFileName( const char* lpcszFileName )
{
 if( g_lpszFileName ){
  free( g_lpszFileName );
 }
 g_lpszFileName = strdup( lpcszFileName );
}

    如果程序在结束的时候没有释放g_lpszFileName指向的字符串,那么,即使多次调用SetFileName(),总会有一块内存,而且仅有一块内存发生泄漏。

示例四:

class Connection
{
 public:
  Connection( SOCKET s);
  ~Connection();
  …
 private:
  SOCKET _socket;
  …
};

class ConnectionManager
{
 public:
  ConnectionManager(){}
  ~ConnectionManager(){
   list::iterator it;
   for( it = _connlist.begin(); it != _connlist.end(); ++it ){
    delete (*it);
   }
   _connlist.clear();
  }
  void OnClientConnected( SOCKET s ){
   Connection* p = new Connection(s);
   _connlist.push_back(p);
  }
  void OnClientDisconnected( Connection* pconn ){
   _connlist.remove( pconn );
   delete pconn;
  }
 private:
  list _connlist;
};

假设在Client从Server端断开后,Server并没有呼叫OnClientDisconnected()函数,那么代表那次连接的 Connection对象就不会被及时的删除(在Server程序退出的时候,所有Connection对象会在ConnectionManager的析 构函数里被删除)。当不断的有连接建立、断开时隐式内存泄漏就发生了。程序在运行过程中不停的分配内存,但是直到结束的时候才释放内存。严格的说这里并没有发生内存泄漏,因为最终程序释放了所有申请的内存。但 是对于一个服务器程序,需要运行几天,几周甚至几个月,不及时释放内存也可能导致最终耗尽系统的所有内存。所以,我们称这类内存泄漏为隐式内存泄漏。

2.内存检测

2.1步骤一

在程序中包括以下语句(#include 语句必须采用上文所示顺序。 如果更改了顺序,所使用的函数可能无法正常工作。)

#define
 _CRTDBG_MAP_ALLOC
#include<stdlib.h>
#include<crtdbg.h>

2.2步骤二

在添加了上述语句之后,可以通过在程序中包括_CrtDumpMemoryLeaks()来转储内存泄漏信息,如下:

#define _CRTDBG_MAP_ALLOC
#include <stdlib.h>
#include <crtdbg.h>
#include <iostream>
using namespace std;
 
void GetMemory(char *p, int num)
{
    p = (char*)malloc(sizeof(char) * num);
}
 
int main(int argc,char** argv)
{
    char *str = NULL;
    GetMemory(str, 100);
    cout<<"Memory leak test!"<<endl;
    _CrtDumpMemoryLeaks();
    return 0;
}

如果程序总是在同一位置退出,调用 _CrtDumpMemoryLeaks ()将非常容易。 如果程序从多个位置退出,则无需在每个可能退出的位置放置对 _CrtDumpMemoryLeaks ()的调用,而可以在程序开始处包含以下调用:

_CrtSetDbgFlag ( _CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF );

该语句在程序退出时自动调用_CrtDumpMemoryLeaks(),必须同时设置_CRTDBG_ALLOC_MEM_DF_CRTDBG_LEAK_CHECK_DF 两个位域。

3.定位具体的内存泄漏地方

通过上面的方法,我们几乎可以定位到是哪个地方调用内存分配函数malloc和new等,如上例中的GetMemory函数中,即第10行!但是不能定位到,在哪个地方调用GetMemory()导致的内存泄漏,而且在大型项目中可能有很多处调用GetMemory。如何要定位到在哪个地方调用GetMemory导致的内存泄漏.定位内存泄漏的另一种技术涉及在关键点对应用程序的内存状态拍快照。 CRT 库提供一种结构类型 _CrtMemState,您可用它存储内存状态的快照:
_CrtMemState s1, s2, s3;
若要在给定点对内存状态拍快照,请向 _CrtMemCheckpoint 函数传递 _CrtMemState 结构。 该函数用当前内存状态的快照填充此结构:
_CrtMemCheckpoint( &s1 );
通过向 _CrtMemDumpStatistics 函数传递 _CrtMemState 结构,可以在任意点转储该结构的内容:
_CrtMemDumpStatistics( &s1 );
若要确定代码中某一部分是否发生了内存泄漏,可以在该部分之前和之后对内存状态拍快照,然后使用 _CrtMemDifference 比较这两个状态.顾名思义,_CrtMemDifference 比较两个内存状态(s1 和 s2),生成这两个状态之间差异的结果(s3)。 在程序的开始和结尾放置 _CrtMemCheckpoint 调用,并使用_CrtMemDifference 比较结果,是检查内存泄漏的另一种方法。 如果检测到泄漏,则可以使用 _CrtMemCheckpoint 调用通过二进制搜索技术来划分程序和定位泄漏。
_CrtMemCheckpoint( &s1 );
// memory allocations take place here
_CrtMemCheckpoint( &s2 );
 
if ( _CrtMemDifference( &s3, &s1, &s2) )
   _CrtMemDumpStatistics( &s3 );
我们现在改进原来的例子:
    在程序的开始和结尾放置 _CrtMemCheckpoint()调用,并使用_CrtMemDifference() 比较结果,是检查内存泄漏的另一种方法。 如果检测到泄漏,则可以使用 _CrtMemCheckpoint()调用通过二进制搜索技术来划分程序和定位泄漏。
#define _CRTDBG_MAP_ALLOC
#include <stdlib.h>
#include <crtdbg.h>
#include <iostream>
using namespace std;
_CrtMemState s1, s2, s3;
 
void GetMemory(char *p, int num)
{
    p = (char*)malloc(sizeof(char) * num);
}
 
int main(int argc,char** argv)
{
    _CrtMemCheckpoint( &s1 );
    char *str = NULL;
    GetMemory(str, 100);
    _CrtMemCheckpoint( &s2 );
    if ( _CrtMemDifference( &s3, &s1, &s2) )
        _CrtMemDumpStatistics( &s3 );
    cout<<"Memory leak test!"<<endl;
    _CrtDumpMemoryLeaks();
    return 0;
}

4.如何避免内存泄露

    1、如果构造函数new了一个对象并使用成员指针变量保存的话,那么必须在析构函数delete它,并且不能有为了某些便利而将这个对象的所有权转让出去的事情发生。
    2、在能使用shared_ptr的时候,尽量使用shared_ptr。shared_ptr只要你不发生循环引用,那么这个东西可以安全地互相传递、随便你放在什么容器里面添加删除、你想放哪里就放在哪里,再也不用考虑这个对象的生命周期问题了。
     3、不要在有构造函数和析构函数的对象上使用memset(或者memcpy)。如果一个对象需要memset,那么在该对象的构造函数里面memset自己。如果你需要memset一个对象数组,那也在该对象的构造函数里面memset自己。如果你需要memset一个没有构造函数的复杂对象,那么请为他添加一个构造函数,除非那是别人的API提供的东西。
    4、如果一个对象是继承了其他东西,或者某些成员被标记了virtual的话,绝对不要memset。对象是独立的,也就是说父类内部结构的演变不需要对子类负责。哪天父类里面加了一个string成员,被子类一memset,就欲哭无泪了。
    5、如果需要为一个对象定义构造函数,那么连复制构造函数、operator=重载和析构函数都全部写全。如果不想写复制构造函数和operator=的话,那么用一个空的实现写在private里面,确保任何试图调用这些函数的代码都出现编译错误。
     6、如果你实在很喜欢C语言的话,那麻烦换一个只支持C不支持C++的编译器,全面杜绝因为误用了C++而导致你的C坏掉的情况出现。








猜你喜欢

转载自blog.csdn.net/qq_35703848/article/details/79746346
今日推荐