x86 I/O端口和I/O内存

原文地址:https://blog.csdn.net/jinchijixiaofeng/article/details/8887894

3.3 管理I/O Region资源
  Linux将基于I/O映射方式的I/O端口和基于内存映射方式的I/O端口资源统称为“I/O区域”(I/O Region)。I/O Region仍然是一种I/O资源,因此它仍然可以用resource结构类型来描述。下面我们就来看看Linux是如何管理I/O Region的。
  3.3.1 I/O Region的分配
  在函数__request_resource()的基础上,Linux实现了用于分配I/O区域的函数__request_region(),如下:

struct resource * __request_region(struct resource *parent,
  unsigned long start, unsigned long n, const char *name)
{
         struct resource *res = kmalloc(sizeof(*res), GFP_KERNEL);

         if (res) {
                 memset(res, 0, sizeof(*res));
                 res->name = name;
                 res->start = start;
                 res->end = start + n - 1;
                 res->flags = IORESOURCE_BUSY;

                 write_lock(&resource_lock);

                 for (;;) {
                          struct resource *conflict;

                          conflict = __request_resource(parent, res);
                          if (!conflict)
                                   break;
                          if (conflict != parent) {
                                   parent = conflict;
                                   if (!(conflict->flags & IORESOURCE_BUSY))
                                            continue;
                          }

                          /* Uhhuh, that didn't work out.. */
                          kfree(res);
                          res = NULL;
                          break;
                 }
                 write_unlock(&resource_lock);
         }
         return res;
}
NOTE:
  ①首先,调用kmalloc()函数在SLAB分配器缓存中分配一个resource结构。
  ②然后,相应的根据参数值初始化所分配的resource结构。注意!flags成员被初始化为IORESOURCE_BUSY。
  ③接下来,用一个for循环开始进行资源分配,循环体的步骤如下:
  l 首先,调用__request_resource()函数进行资源分配。如果返回NULL,说明分配成功,因此就执行break语句推出for循环,返回所分配的resource结构的指针,函数成功地结束。
  l 如果__request_resource()函数分配不成功,则进一步判断所返回的冲突资源节点是否就是父资源节点parent。如果不是,则将分配行为下降一个层次,即试图在当前冲突的资源节点中进行分配(只有在冲突的资源节点没有设置IORESOURCE_BUSY的情况下才可以),于是让parent指针等于conflict,并在conflict->flags&IORESOURCE_BUSY为0的情况下执行continue语句继续for循环。
  l 否则如果相冲突的资源节点就是父节点parent,或者相冲突资源节点设置了IORESOURCE_BUSY标志位,则宣告分配失败。于是调用kfree()函数释放所分配的resource结构,并将res指针置为NULL,最后用break语句推出for循环。
  ④最后,返回所分配的resource结构的指针。
   3.3.2 I/O Region的释放
  函数__release_region()实现在一个父资源节点parent中释放给定范围的I/O Region。实际上该函数的实现思想与__release_resource()相类似。其源代码如下:

void __release_region(struct resource *parent,
    unsigned long start, unsigned long n)
{
         struct resource **p;
         unsigned long end;

         p = &parent->child;
         end = start + n - 1;

         for (;;) {
                 struct resource *res = *p;

                 if (!res)
                          break;
                 if (res->start end >= end) {
                          if (!(res->flags & IORESOURCE_BUSY)) {
                                   p = &res->child;
                                   continue;
                          }
                          if (res->start != start'  'res->end != end)
                                   break;
                          *p = res->sibling;
                          kfree(res);
                          return;
                 }
                 p = &res->sibling;
         }
         printk("Trying to free nonexistent resource
", start, end);
}
  类似地,该函数也是通过一个for循环来遍历父资源parent的child链表。为此,它让指针res指向当前正被扫描的子资源节点,指针p指向前一个子资源节点的sibling成员变量,p的初始值为指向parent->child。For循环体的步骤如下:
  ①让res指针指向当前被扫描的子资源节点(res=*p)。
  ②如果res指针为NULL,说明已经扫描完整个child链表,所以退出for循环。
  ③如果res指针不为NULL,则继续看看所指定的I/O区域范围是否完全包含在当前资源节点中,也即看看[start,start+n-1]是否包含在res->[start,end]中。如果不属于,则让p指向当前资源节点的sibling成员,然后继续for循环。如果属于,则执行下列步骤:
  l 先看看当前资源节点是否设置了IORESOURCE_BUSY标志位。如果没有设置该标志位,则说明该资源节点下面可能还会有子节点,因此将扫描过程下降一个层次,于是修改p指针,使它指向res->child,然后执行continue语句继续for循环。
  l 如果设置了IORESOURCE_BUSY标志位。则一定要确保当前资源节点就是所指定的I/O区域,然后将当前资源节点从其父资源的child链表中去除。这可以通过让前一个兄弟资源节点的sibling指针指向当前资源节点的下一个兄弟资源节点来实现(即让*p=res->sibling),最后调用kfree()函数释放当前资源节点的resource结构。然后函数就可以成功返回了。
  3.3.3 检查指定的I/O Region是否已被占用
  函数__check_region()检查指定的I/O Region是否已被占用。其源代码如下:

int __check_region(struct resource *parent, unsigned long start, unsigned long n)
{
         struct resource * res;

         res = __request_region(parent, start, n, "check-region");
         if (!res)
                 return -EBUSY;

         release_resource(res);
         kfree(res);
         return 0;
}
  该函数的实现与__check_resource()的实现思想类似。首先,它通过调用__request_region()函数试图在父资源parent中分配指定的I/O Region。如果分配不成功,将返回NULL,因此此时函数返回错误值-EBUSY表示所指定的I/O Region已被占用。如果res指针不为空则说明所指定的I/O Region没有被占用。于是调用__release_resource()函数将刚刚分配的资源释放掉(实际上是将res结构从parent的child链表去除),然后调用kfree()函数释放res结构所占用的内存。最后,返回0值表示指定的I/O Region没有被占用。
3.4 管理I/O端口资源
  我们都知道,采用I/O映射方式的X86处理器为外设实现了一个单独的地址空间,也即“I/O空间”(I/O Space)或称为“I/O端口空间”,其大小是64KB(0x0000-0xffff)。Linux在其所支持的所有平台上都实现了“I/O端口空间”这一概念。
  由于I/O空间非常小,因此即使外设总线有一个单独的I/O端口空间,却也不是所有的外设都将其I/O端口(指寄存器)映射到“I/O端口空间”中。比如,大多数PCI卡都通过内存映射方式来将其I/O端口或外设内存映射到CPU的RAM物理地址空间中。而老式的ISA卡通常将其I/O端口映射到I/O端口空间中。
  Linux是基于“I/O Region”这一概念来实现对I/O端口资源(I/O-mapped 或 Memory-mapped)的管理的。
  3.4.1 资源根节点的定义
  Linux在kernel/Resource.c文件中定义了全局变量ioport_resource和iomem_resource,来分别描述基于I/O映射方式的整个I/O端口空间和基于内存映射方式的I/O内存资源空间(包括I/O端口和外设内存)。其定义如下:

struct resource ioport_resource =
    { "PCI IO", 0x0000, IO_SPACE_LIMIT, IORESOURCE_IO };
struct resource iomem_resource =
    { "PCI mem", 0x00000000, 0xffffffff, IORESOURCE_MEM };
  其中,宏IO_SPACE_LIMIT表示整个I/O空间的大小,对于X86平台而言,它是0xffff(定义在include/asm-i386/io.h头文件中)。显然,I/O内存空间的大小是4GB。
  3.4.2 对I/O端口空间的操作
  基于I/O Region的操作函数__XXX_region(),Linux在头文件include/linux/ioport.h中定义了三个对I/O端口空间进行操作的宏:①request_region()宏,请求在I/O端口空间中分配指定范围的I/O端口资源。②check_region()宏,检查I/O端口空间中的指定I/O端口资源是否已被占用。③release_region()宏,释放I/O端口空间中的指定I/O端口资源。这三个宏的定义如下:

#define request_region(start,n,name)
         __request_region(&ioport_resource, (start), (n), (name))
#define check_region(start,n)
         __check_region(&ioport_resource, (start), (n))
#define release_region(start,n)
         __release_region(&ioport_resource, (start), (n))
  其中,宏参数start指定I/O端口资源的起始物理地址(是I/O端口空间中的物理地址),宏参数n指定I/O端口资源的大小。
  3.4.3 对I/O内存资源的操作
  基于I/O Region的操作函数__XXX_region(),Linux在头文件include/linux/ioport.h中定义了三个对I/O内存资源进行操作的宏:①request_mem_region()宏,请求分配指定的I/O内存资源。②check_ mem_region()宏,检查指定的I/O内存资源是否已被占用。③release_ mem_region()宏,释放指定的I/O内存资源。这三个宏的定义如下:

#define request_mem_region(start,n,name)
  __request_region(&iomem_resource, (start), (n), (name))
#define check_mem_region(start,n)
         __check_region(&iomem_resource, (start), (n))
#define release_mem_region(start,n)
         __release_region(&iomem_resource, (start), (n))
  其中,参数start是I/O内存资源的起始物理地址(是CPU的RAM物理地址空间中的物理地址),参数n指定I/O内存资源的大小。
  3.4.4 对/proc/ioports和/proc/iomem的支持
  Linux在ioport.h头文件中定义了两个宏:
  get_ioport_list()和get_iomem_list(),分别用来实现/proc/ioports文件和/proc/iomem文件。其定义如下:

#define get_ioport_list(buf) get_resource_list(&ioport_resource, buf, PAGE_SIZE)
#define get_mem_list(buf) get_resource_list(&iomem_resource, buf, PAGE_SIZE)
3.5 访问I/O端口空间
  在驱动程序请求了I/O端口空间中的端口资源后,它就可以通过CPU的IO指定来读写这些I/O端口了。在读写I/O端口时要注意的一点就是,大多数平台都区分8位、16位和32位的端口,也即要注意I/O端口的宽度。
  Linux在include/asm/io.h头文件(对于i386平台就是include/asm-i386/io.h)中定义了一系列读写不同宽度I/O端口的宏函数。如下所示:
  ⑴读写8位宽的I/O端口

  unsigned char inb(unsigned port);
  void outb(unsigned char value,unsigned port);
  其中,port参数指定I/O端口空间中的端口地址。在大多数平台上(如x86)它都是unsigned short类型的,其它的一些平台上则是unsigned int类型的。显然,端口地址的类型是由I/O端口空间的大小来决定的。
  ⑵读写16位宽的I/O端口

  unsigned short inw(unsigned port);
  void outw(unsigned short value,unsigned port);
  ⑶读写32位宽的I/O端口

  unsigned int inl(unsigned port);
  void outl(unsigned int value,unsigned port);
  3.5.1 对I/O端口的字符串操作
  除了上述这些“单发”(single-shot)的I/O操作外,某些CPU也支持对某个I/O端口进行连续的读写操作,也即对单个I/O端口读或写一系列字节、字或32位整数,这就是所谓的“字符串I/O指令”(String Instruction)。这种指令在速度上显然要比用循环来实现同样的功能要快得多。
  Linux同样在io.h文件中定义了字符串I/O读写函数:
  ⑴8位宽的字符串I/O操作

  void insb(unsigned port,void * addr,unsigned long count);
  void outsb(unsigned port ,void * addr,unsigned long count);
  ⑵16位宽的字符串I/O操作

  void insw(unsigned port,void * addr,unsigned long count);
  void outsw(unsigned port ,void * addr,unsigned long count);
  ⑶32位宽的字符串I/O操作

  void insl(unsigned port,void * addr,unsigned long count);
  void outsl(unsigned port ,void * addr,unsigned long count);
  3.5.2 Pausing I/O
  在一些平台上(典型地如X86),对于老式总线(如ISA)上的慢速外设来说,如果CPU读写其I/O端口的速度太快,那就可能会发生丢失数据的现象。对于这个问题的解决方法就是在两次连续的I/O操作之间插入一段微小的时延,以便等待慢速外设。这就是所谓的“Pausing I/O”。
  对于Pausing I/O,Linux也在io.h头文件中定义了它的I/O读写函数,而且都以XXX_p命名,比如:inb_p()、outb_p()等等。下面我们就以out_p()为例进行分析。
  将io.h中的宏定义__OUT(b,”b”char)展开后可得如下定义:

extern inline void outb(unsigned char value, unsigned short port) {
         __asm__ __volatile__ ("outb %" "b " "0,%" "w" "1"
                                   : : "a" (value), "Nd" (port));
}

extern inline void outb_p(unsigned char value, unsigned short port) {
         __asm__ __volatile__ ("outb %" "b " "0,%" "w" "1"
                                   __FULL_SLOW_DOWN_IO
                                   : : "a" (value), "Nd" (port));
}
  可以看出,outb_p()函数的实现中被插入了宏__FULL_SLOWN_DOWN_IO,以实现微小的延时。宏__FULL_SLOWN_DOWN_IO在头文件io.h中一开始就被定义:

#ifdef SLOW_IO_BY_JUMPING
#define __SLOW_DOWN_IO "
jmp 1f
1:       jmp 1f
1:"
#else
#define __SLOW_DOWN_IO "
outb %%al,$0x80"
#endif

#ifdef REALLY_SLOW_IO
#define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO
  __SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO
#else
#define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO
#endif
  显然,__FULL_SLOW_DOWN_IO就是一个或四个__SLOW_DOWN_IO(根据是否定义了宏REALLY_SLOW_IO来决定),而宏__SLOW_DOWN_IO则被定义成毫无意义的跳转语句或写端口0x80的操作(根据是否定义了宏SLOW_IO_BY_JUMPING来决定)。
3.6 访问I/O内存资源
  尽管I/O端口空间曾一度在x86平台上被广泛使用,但是由于它非常小,因此大多数现代总线的设备都以内存映射方式(Memory-mapped)来映射它的I/O端口(指I/O寄存器)和外设内存。 基于内存映射方式的I/O端口(指I/O寄存器)和外设内存可以通称为“I/O内存”资源(I/O Memory)。因为这两者在硬件实现上的差异对于软件来说是完全透明的,所以驱动程序开发人员可以将内存映射方式的I/O端口和外设内存统一看作是“I/O内存”资源。
  从前几节的阐述我们知道,I/O内存资源是在CPU的单一内存物理地址空间内进行编址的,也即它和系统RAM同处在一个物理地址空间内。因此通过CPU的访内指令就可以访问I/O内存资源。
一般来说,在系统运行时,外设的I/O内存资源的物理地址是已知的,这可以通过系统固件(如BIOS)在启动时分配得到,或者通过设备的硬连线(hardwired)得到,或者kernel在启动的过程中自动探测自动分配得到,比如PCI总线 。      

比如,PCI卡的I/O内存资源的物理地址就是在系统启动时由PCI BIOS分配并写到PCI卡的配置空间中的BAR中的。而ISA卡的I/O内存资源的物理地址则是通过设备硬连线映射到640KB-1MB范围之内的。但是CPU通常并没有为这些已知的外设I/O内存资源的物理地址预定义虚拟地址范围,因为它们是在系统启动后才已知的(某种意义上讲是动态的), 所以驱动程序并不能直接通过物理地址访问I/O内存资源(因为物理地址可能也是动态的),而必须将它们映射到核心虚地址空间内(通过页表),然后才能根据映射所得到的核心虚地址范围,通过访内指令访问这些I/O内存资源。 ??IO内存资源的定义,见上面:
  3.6.1 映射I/O内存资源
  Linux在io.h头文件中声明了函数ioremap(),用来将I/O内存资源的物理地址映射到核心虚地址空间(3GB-4GB)中,如下:

void * ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags);
void iounmap(void * addr);
  Iounmap()函数用于取消ioremap()所做的映射,参数addr是指向核心虚地址的指针。这两个函数都是实现在mm/ioremap.c文件中。具体实现可参考《情景分析》一书。
  3.6.2 读写I/O内存资源
  在将I/O内存资源的物理地址映射成核心虚地址后,理论上讲我们就可以象读写RAM那样直接读写I/O内存资源了。但是,由于在某些平台上,对I/O内存和系统内存有不同的访问处理,因此为了确保跨平台的兼容性,Linux实现了一系列读写I/O内存资源的函数,这些函数在不同的平台上有不同的实现。但在x86平台上,读写I/O内存与读写RAM无任何差别。如下所示(include/asm-i386/io.h):

#define readb(addr) (*(volatile unsigned char *) __io_virt(addr))
#define readw(addr) (*(volatile unsigned short *) __io_virt(addr))
#define readl(addr) (*(volatile unsigned int *) __io_virt(addr))

#define writeb(b,addr) (*(volatile unsigned char *) __io_virt(addr) = (b))
#define writew(b,addr) (*(volatile unsigned short *) __io_virt(addr) = (b))
#define writel(b,addr) (*(volatile unsigned int *) __io_virt(addr) = (b))

#define memset_io(a,b,c)  memset(__io_virt(a),(b),(c))
#define memcpy_fromio(a,b,c) memcpy((a),__io_virt(b),(c))
#define memcpy_toio(a,b,c)         memcpy(__io_virt(a),(b),(c))
  上述定义中的宏__io_virt()仅仅检查虚地址addr是否是核心空间中的虚地址。该宏在内核2.4.0中的实现是临时性的。具体的实现函数在arch/i386/lib/Iodebug.c文件。
  显然,在x86平台上访问I/O内存资源与访问系统主存RAM是无差别的。但是为了保证驱动程序的跨平台的可移植性,我们应该使用上面的函数来访问I/O内存资源,而不应该通过指向核心虚地址的指针来访问。

//通过学习这篇文章的结论:

掌握IO端口的定义,  IO内存的定义, 为什么驱动程序不能访问设备物理地址。
CPU不能直接访问 IO端口的物理地址,因为设备的物理地址,可能是动态的,所以驱动程序中,无法直接使用物理地址来访问IO端口(即是设备的寄存器)

设备的物理地址的确定:

“I/O内存”资源(I/O Memory):
基于内存映射方式的I/O端口(指I/O寄存器)和外设内存可以通称为“I/O内存”资源(I/O Memory)。
因为这两者在硬件实现上的差异对于软件来说是完全透明的,所以驱动程序开发人员可以将内存映射方式的I/O端口和外设内存统一看作是“I/O内存”资源。
所以驱动程序并不能直接通过物理地址访问I/O内存资源(因为物理地址可能也是动态的)

猜你喜欢

转载自blog.csdn.net/renlonggg/article/details/80510093
今日推荐