玩转数据结构(八)循环队列

1、为什么要循环队列?

可以看看这篇文章:静态队列为什么必须是循环队列

2、循环队列要点

        判空队列为空的条件:head == tail

        判断队列已满的条件: (head + 1) % 数组长度 == tail

        入队后维护tail:  tail = (tail + 1) % 数组长度

        出队后维护front:  front = (front + 1) % 数组长度

        注意:需要浪费一个空间来区分判空和盘满的条件

3、队列接口

public interface Queue<E> {
    int getSize();
    void enqueue(E e);
    E dequeue();
    E getFront();
    boolean isEmpty();
}

4、实现代码

/**
 * 循环队列:
 *  判满:(tail+1) % length == front
 *  判空:tail == front
 * @param <E> 泛型
 */
public class LoopQueue<E> implements Queue<E> {
    private E[] data;//存储数据的数组
    private int front;//尾指针
    private int tail;//头指针
    private int size;//计数

    //构造方法
    public LoopQueue() {
        this(10);
    }

    public LoopQueue(int capacity) {
        data = (E[])new Object[capacity + 1];
        front = 0;
        tail = 0;
        size = 0;
    }

    @Override
    public int getSize() {
        return size;
    }

    public int getCapacity() {
        return data.length - 1;//需要浪费一个空间,以此来区分判空和判满的条件
    }

    @Override
    public void enqueue(E e) {
        //扩容
        if((tail + 1) % data.length == front) {
            resize(getCapacity() * 2);
        }
        //入队操作
        data[tail] = e;
        tail = (tail + 1) % data.length;
        size++;
    }

    @Override
    public E dequeue() {
        if(isEmpty()) {
            throw new IllegalArgumentException("Queue is empty! cannot dequeue from an empty queue!");
        }

        E res = data[front];
        data[front] = null;
        front = (front + 1) % data.length;
        size--;

        //缩容
        if(size == getCapacity() / 4 && getCapacity() / 2 != 0) {
            resize(getCapacity() / 2);
        }
        return res;
    }

    /**
     * 扩容
     * @param newCapacity
     */
    private void resize(int newCapacity) {
        E[] newData = (E[])new Object[newCapacity + 1];
        for (int i = 0; i < size; i++) {
            newData[i] = data[(i + front) % data.length];
        }

        data = newData;
        front = 0;
        tail = size;
    }

    @Override
    public E getFront() {
        if(isEmpty()) {
            throw new IllegalArgumentException("Queue is empty!");
        }

        return data[front];
    }

    @Override
    public boolean isEmpty() {
        return tail == front;
    }

    @Override
    public String toString() {
        StringBuilder str = new StringBuilder();
        str.append(String.format("LoopQueue: size=%d, capacity=%d ", size, getCapacity()));
        str.append("front [");
        for(int i = front; i != tail; i = (i + 1) % data.length) {
            str.append(data[i]);
            if((i + 1) % data.length != tail) {
                str.append(",");
            }
        }
        str.append("] tail");

        return str.toString();
    }
}

5、测试代码

 public static void main(String[] args) {
        LoopQueue<Integer> loopQueue = new LoopQueue<Integer>();
        for (int i = 0; i < 10; i++) {
            loopQueue.enqueue(i);
            System.out.println(loopQueue);

            if(i % 3 == 2) {
                loopQueue.dequeue();
                System.out.println(loopQueue);
            }
        }
    }

6、结果

LoopQueue: size=1, capacity=10 front [0] tail
LoopQueue: size=2, capacity=10 front [0,1] tail
LoopQueue: size=3, capacity=10 front [0,1,2] tail
LoopQueue: size=2, capacity=5 front [1,2] tail
LoopQueue: size=3, capacity=5 front [1,2,3] tail
LoopQueue: size=4, capacity=5 front [1,2,3,4] tail
LoopQueue: size=5, capacity=5 front [1,2,3,4,5] tail
LoopQueue: size=4, capacity=5 front [2,3,4,5] tail
LoopQueue: size=5, capacity=5 front [2,3,4,5,6] tail
LoopQueue: size=6, capacity=10 front [2,3,4,5,6,7] tail
LoopQueue: size=7, capacity=10 front [2,3,4,5,6,7,8] tail
LoopQueue: size=6, capacity=10 front [3,4,5,6,7,8] tail
LoopQueue: size=7, capacity=10 front [3,4,5,6,7,8,9] tail

6、时间复杂度分析

入队时直接将数据放入tail所指向的索引处,因此时间复杂度O(1)

出队时直接从front索引的空间取数据,因此时间复杂度也是O(1)




猜你喜欢

转载自blog.csdn.net/zhoujian_liu/article/details/80903884