Linux驱动之从点LED灯开始

目录

一、环境

二、Linux 下 LED 灯驱动原理

2.1 地址映射

2.2 I/O 内存访问函数

三、硬件原理图分析

四、实验程序编写

4.1驱动程序编写

4.2测试APP编写

五、编译驱动程序和测试 APP

5.1 编译驱动程序

5.2 编译测试 APP

六、测试

         本期的内容到这就结束了,如果觉得文章不错,可以点赞、收藏和关注哦,谢谢大家收看,下期再见!


        本章我们就开始编写第一个真正的 Linux 字符设备驱动LED 灯驱动。麻雀虽小,五脏俱全。本次点亮 LED 看似很简单,但却包含了字符驱动开发的全部步骤

一、环境

  • CPU型号:IMX6ULL

  • 内核版本:Linux-5.19

二、Linux 下 LED 灯驱动原理

        Linux 下的任何外设驱动,最终都是要配置相应的硬件寄存器。所以本章的 LED 灯驱动最终也是对 I.MX6ULL 的 IO 口进行配置,与裸机实验不同的是,在 Linux 下编写驱动要符合 Linux的驱动框架。

2.1 地址映射

        在编写驱动之前,我们需要先简单了解一下 MMU 这个神器, MMU 全称叫做 MemoryManage Unit,也就是内存管理单元。在老版本的 Linux 中要求处理器必须有 MMU,但是现在Linux 内核已经支持无 MMU 的处理器了。 MMU 主要完成的功能如下:

        ①、完成虚拟空间到物理空间的映射。

        ②、内存保护,设置存储器的访问权限,设置虚拟存储空间的缓冲特性。

        我们重点来看一下第①点,也就是虚拟空间到物理空间的映射,也叫做地址映射。首先了解两个地址概念:虚拟地址(VA,Virtual Address)、物理地址(PA, Physcical Address)。对于 32 位的处理器来说,虚拟地址范围是 2^32=4GB,我们的开发板上有 512MB 的 DDR3,这 512MB 的内存就是物理内存,经过 MMU 可以将其映射到整个 4GB 的虚拟空间,如下图所示:

7ae2a27e7f3a77f0521d2f1fb064a288.png

        物理内存只有 512MB,虚拟内存有 4GB,那么肯定存在多个虚拟地址映射到同一个物理地址上去,虚拟地址范围比物理地址范围大的问题处理器自会处理,这里我们不要去深究,因为MMU 是很复杂的一个东西,感兴趣的可以自己找资料进行学习。

        Linux 内核启动的时候会初始化 MMU,设置好内存映射,设置好以后 CPU 访问的都是虚拟 地 址 。 比 如 I.MX6ULL 的 GPIO1_IO03 引 脚 的 复 用 寄 存 器IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03 的地址为 0X020E0068。如果没有开启 MMU 的话直接向 0X020E0068 这个寄存器地址写入数据就可以配置 GPIO1_IO03 的复用功能。现在开启了 MMU,并且设置了内存映射,因此就不能直接向 0X020E0068 这个地址写入数据了。我们必须得到 0X020E0068 这个物理地址在 Linux 系统里面对应的虚拟地址,这里就涉及到了物理内存和虚拟内存之间的转换,需要用到两个函数: ioremap 和 iounmap。

  • ioremap 函数

        ioremap 函 数 用 于 获 取 指 定 物 理 地 址 空 间 对 应 的 虚 拟 地 址 空 间 , 定 义 在arch/arm/include/asm/io.h 文件中,定义如下:

void __iomem *ioremap(resource_size_t res_cookie, size_t size);
#define ioremap ioremap

        最终定义在arch/arm/mm/ioremap.c

void __iomem *ioremap(resource_size_t res_cookie, size_t size)
{
    return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
                   __builtin_return_address(0));
}

        ioremap 是个宏,有两个参数: cookiesize,真正起作用的是函数__arm_ioremap,此函数有三个参数和一个返回值,这些参数和返回值的含义如下:

  • phys_addr:要映射的物理起始地址。

  • size:要映射的内存空间大小。

  • mtype: ioremap 的类型,可以选择 MT_DEVICEMT_DEVICE_NONSHAREDMT_DEVICE_CACHEDMT_DEVICE_WC, ioremap 函数选择 MT_DEVICE。

  • 返回值: __iomem 类型的指针,指向映射后的虚拟空间首地址。

        假如我们要获取 I.MX6ULL 的 IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03 寄存器对应的虚拟地址,使用如下代码即可:

#define SW_MUX_GPIO1_IO03_BASE (0X020E0068)
static void __iomem* SW_MUX_GPIO1_IO03;
SW_MUX_GPIO1_IO03 = ioremap(SW_MUX_GPIO1_IO03_BASE, 4);

        宏 SW_MUX_GPIO1_IO03_BASE 是寄存器物理地址, SW_MUX_GPIO1_IO03 是映射后的虚拟地址。对于 I.MX6ULL 来说一个寄存器是 4 字节(32 位)的,因此映射的内存长度为 4。映射完成以后直接对 SW_MUX_GPIO1_IO03 进行读写操作即可。

  • iounmap 函数

        卸载驱动的时候需要使用 iounmap 函数释放掉 ioremap 函数所做的映射, iounmap 函数原型如下:

void iounmap (volatile void __iomem *addr)

        iounmap 只有一个参数 addr,此参数就是要取消映射的虚拟地址空间首地址。假如我们现在要取消掉 IOMUXC_SW_MUX_CTL_PAD_GPIO1_IO03 寄存器的地址映射,使用如下代码即可:

iounmap(SW_MUX_GPIO1_IO03);

2.2 I/O 内存访问函数

        这里说的 I/O 是输入/输出的意思,并不是我们学习单片机的时候讲的 GPIO 引脚。这里涉及到两个概念: I/O 端口和 I/O 内存。当外部寄存器或内存映射到 IO 空间时,称为 I/O 端口。当外部寄存器或内存映射到内存空间时,称为 I/O 内存。但是对于 ARM 来说没有 I/O 空间这个概念,因此 ARM 体系下只有 I/O 内存(可以直接理解为内存)。使用 ioremap 函数将寄存器的物理地址映射到虚拟地址以后,我们就可以直接通过指针访问这些地址,但是 Linux 内核不建议这么做,而是推荐使用一组操作函数来对映射后的内存进行读写操作。

  • 读操作函数

读操作函数有如下几个:

u8 readb(const volatile void __iomem *addr)
u16 readw(const volatile void __iomem *addr)
u32 readl(const volatile void __iomem *addr)

        readb、 readw 和 readl 这三个函数分别对应 8bit、 16bit 和 32bit 读操作,参数 addr 就是要读取写内存地址,返回值就是读取到的数据。

  • 写操作函数

写操作函数有如下几个:

void writeb(u8 value, volatile void __iomem *addr)
void writew(u16 value, volatile void __iomem *addr)
void writel(u32 value, volatile void __iomem *addr)

        writeb、 writew 和 writel 这三个函数分别对应 8bit、 16bit 和 32bit 写操作,参数 value 是要写入的数值, addr 是要写入的地址。

三、硬件原理图分析

原理图上LED的硬件连线如下:

bb8850e5fc456cde57e053a327073aa3.png

        可以看出, LED0 接到了 GPIO_3 上, GPIO_3 就是 GPIO1_IO03,当 GPIO1_IO03输出低电平(0)的时候发光二极管 LED0 就会导通点亮,当 GPIO1_IO03 输出高电平(1)的时候发光二极管 LED0 不会导通,因此 LED0 也就不会点亮。所以 LED0 的亮灭取决于 GPIO1_IO03的输出电平,输出 0 就亮,输出 1 就灭。

四、实验程序编写

4.1驱动程序编写

新建led.c,在 led.c 里面输入如下内容:

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>
/***************************************************************
Copyright © toto Co., Ltd. 1998-2029. All rights reserved.
文件名 : led.c
作者 : toto
版本 : V1.0
描述 : LED 驱动文件
其他 : 无
***************************************************************/
#define LED_MAJOR 200  /* 主设备号 */
#define LED_NAME "led" /* 设备名字 */

#define LEDOFF 0       /* 关灯 */
#define LEDON 1        /* 开灯 */

/* 寄存器物理地址 */
#define CCM_CCGR1_BASE         (0X020C406C)
#define SW_MUX_GPIO1_IO03_BASE (0X020E0068)
#define SW_PAD_GPIO1_IO03_BASE (0X020E02F4)
#define GPIO1_DR_BASE          (0X0209C000)
#define GPIO1_GDIR_BASE        (0X0209C004)

/* 映射后的寄存器虚拟地址指针 */
static void __iomem *IMX6U_CCM_CCGR1;
static void __iomem *SW_MUX_GPIO1_IO03;
static void __iomem *SW_PAD_GPIO1_IO03;
static void __iomem *GPIO1_DR;
static void __iomem *GPIO1_GDIR;

/*
* @description : LED 打开/关闭
* @param - sta : LEDON(0) 打开 LED, 
                 LEDOFF(1) 关闭 LED
* @return : 无
*/
void led_switch(u8 sta)
{
    u32 val = 0;
    if(sta == LEDON)
    {
        val = readl(GPIO1_DR);
        val &= ~(1 << 3);
        writel(val, GPIO1_DR);
    }
    else if(sta == LEDOFF)
    {
        val = readl(GPIO1_DR);
        val|= (1 << 3);
        writel(val, GPIO1_DR);
    }
}

/*
* @description   : 打开设备
* @param – inode : 传递给驱动的 inode
* @param - filp  : 设备文件,file 结构体有个叫做 private_data 的成员变量
* 一般在 open 的时候将 private_data 指向设备结构体。
* @return : 0 成功;其他 失败
*/
static int led_open(struct inode *inode, struct file *filp)
{
    return 0;
}

/*
* @description  : 从设备读取数据
* @param - filp : 要打开的设备文件(文件描述符)
* @param - buf  : 返回给用户空间的数据缓冲区
* @param - cnt  : 要读取的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 读取的字节数,如果为负值,表示读取失败
*/
static ssize_t led_read(struct file *filp, char __user *buf,
    size_t cnt, loff_t *offt)
{
    return 0;
}

/*
* @description  : 向设备写数据
* @param - filp : 设备文件,表示打开的文件描述符
* @param - buf  : 要写给设备写入的数据
* @param - cnt  : 要写入的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 写入的字节数,如果为负值,表示写入失败
*/
static ssize_t led_write(struct file *filp, const char __user *buf,
    size_t cnt, loff_t *offt)
{
    int retvalue;
    unsigned char databuf[1];
    unsigned char ledstat;

    retvalue = copy_from_user(databuf, buf, cnt);
    if(retvalue < 0)
    {
        printk("kernel write failed!\r\n");
        return -EFAULT;
    }
    
    ledstat = databuf[0];     /* 获取状态值 */
    
    if(ledstat == LEDON)
    {
        led_switch(LEDON);     /* 打开 LED 灯 */
    }
    else if(ledstat == LEDOFF)
    {
        led_switch(LEDOFF);     /* 关闭 LED 灯 */
    }
    
    return 0;
}

/*
* @description  : 关闭/释放设备
* @param – filp : 要关闭的设备文件(文件描述符)
* @return : 0 成功;其他 失败
*/
static int led_release(struct inode *inode, struct file *filp)
{
    return 0;
}

/* 设备操作函数 */
static struct file_operations led_fops = {
    .owner    = THIS_MODULE,
    .open     = led_open,
    .read     = led_read,
    .write    = led_write,
    .release  = led_release,
};

/*
* @description : 驱动入口函数
* @param : 无
* @return : 无
*/
static int __init led_init(void)
{
    int retvalue = 0;
    u32 val = 0;

    /* 初始化 LED */
    /* 1、寄存器地址映射 */
    IMX6U_CCM_CCGR1   = ioremap(CCM_CCGR1_BASE, 4);
    SW_MUX_GPIO1_IO03 = ioremap(SW_MUX_GPIO1_IO03_BASE, 4);
    SW_PAD_GPIO1_IO03 = ioremap(SW_PAD_GPIO1_IO03_BASE, 4);
    GPIO1_DR   = ioremap(GPIO1_DR_BASE, 4);
    GPIO1_GDIR = ioremap(GPIO1_GDIR_BASE, 4);
    
    /* 2、使能 GPIO1 时钟 */
    val = readl(IMX6U_CCM_CCGR1);
    val &= ~(3 << 26); /* 清除以前的设置 */
    val |= (3 << 26); /* 设置新值 */
    writel(val, IMX6U_CCM_CCGR1);
    
    /* 3、设置 GPIO1_IO03 的复用功能,将其复用为
    * GPIO1_IO03,最后设置 IO 属性。
    */
    writel(5, SW_MUX_GPIO1_IO03);
    
    /* 寄存器 SW_PAD_GPIO1_IO03 设置 IO 属性 */
    writel(0x10B0, SW_PAD_GPIO1_IO03);
    
    /* 4、设置 GPIO1_IO03 为输出功能 */
    val = readl(GPIO1_GDIR);
    val &= ~(1 << 3); /* 清除以前的设置 */
    val |= (1 << 3); /* 设置为输出 */
    writel(val, GPIO1_GDIR);
    
    /* 5、默认关闭 LED */
    val = readl(GPIO1_DR);
    val |= (1 << 3);
    writel(val, GPIO1_DR);
    
    /* 6、注册字符设备驱动 */
    retvalue = register_chrdev(LED_MAJOR, LED_NAME, &led_fops);
    if(retvalue < 0)
    {
        printk("register chrdev failed!\r\n");
        return -EIO;
    }
    
    return 0;
}

/*
* @description : 驱动出口函数
* @param : 无
* @return : 无
*/
static void __exit led_exit(void)
{
    /* 取消映射 */
    iounmap(IMX6U_CCM_CCGR1);
    iounmap(SW_MUX_GPIO1_IO03);
    iounmap(SW_PAD_GPIO1_IO03);
    iounmap(GPIO1_DR);
    iounmap(GPIO1_GDIR);

    /* 注销字符设备驱动 */
    unregister_chrdev(LED_MAJOR, LED_NAME);
}

module_init(led_init);
module_exit(led_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("toto");

4.2测试APP编写

        编写测试 APP, led 驱动加载成功以后手动创建/dev/led 节点,应用 APP 通过操作/dev/led文件来完成对 LED 设备的控制。向/dev/led 文件写 0 表示关闭 LED 灯,写 1 表示打开 LED 灯。新建 ledApp.c 文件,在里面输入如下内容:

#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"
/***************************************************************
Copyright © toto Co., Ltd. 1998-2029. All rights reserved.
文件名 : ledApp.c
作者 : toto
描述 : LED 驱测试 APP。
其他 : 无
使用方法 : ./ledtest /dev/led 0 关闭 LED
            ./ledtest /dev/led 1 打开 LED
***************************************************************/

#define LEDOFF 0
#define LEDON 1

/*
* @description  : main 主程序
* @param - argc : argv 数组元素个数
* @param - argv : 具体参数
* @return : 0 成功;其他 失败
*/
int main(int argc, char *argv[])
{
    int fd, retvalue;
    char *filename;
    unsigned char databuf[1];
    
    if(argc != 3)
    {
        printf("Error Usage!\r\n");
        return -1;
    }

    filename = argv[1];
    
    /* 打开 led 驱动 */
    fd = open(filename, O_RDWR);
    if(fd < 0)
    {
        printf("file %s open failed!\r\n", argv[1]);
        return -1;
    }

    databuf[0] = atoi(argv[2]); /* 要执行的操作:打开或关闭 */

    /* 向/dev/led 文件写入数据 */
    retvalue = write(fd, databuf, sizeof(databuf));
    if(retvalue < 0)
    {
        printf("LED Control Failed!\r\n");
        close(fd);
        return -1;
    }

    retvalue = close(fd); /* 关闭文件 */
    if(retvalue < 0)
    {
        printf("file %s close failed!\r\n", argv[1]);
        return -1;
    }
    
    return 0;
}

五、编译驱动程序和测试 APP

5.1 编译驱动程序

编写 Makefile 文件,Makefile 内容如下所示:

KERNELDIR := /home/toto/workspace/linux/linux-5.19
CURRENT_PATH := $(shell pwd)
obj-m := led.o

build: kernel_modules

kernel_modules:
    $(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) modules
clean:
    $(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) clean

第 3 行,设置 obj-m 变量的值为 led.o

输入如下命令编译出驱动模块文件:

make

编译成功以后就会生成一个名为“led.ko”的驱动模块文件。

5.2 编译测试 APP

输入如下命令编译测试 ledApp.c 这个测试程序:

arm-linux-gnueabihf-gcc ledApp.c -o ledApp

编译成功以后就会生成 ledApp 这个应用程序。

六、测试

        给开发板上,将上一小节编译出来的 led.koledApp这两个文件拷贝到 开发板lib/modules/4.1.15目录中。并进入到目录 lib/modules/4.1.15 中,输入如下命令加载 led.ko 驱动模块:

depmod             //第一次加载驱动的时候需要运行此命令
modprobe led.ko    //加载驱动

驱动加载成功以后创建“/dev/led”设备节点,命令如下:

mknod /dev/led c 200 0

驱动节点创建成功以后就可以使用 ledApp 软件来测试驱动是否工作正常,输入如下命令打开 LED 灯:

./ledApp /dev/led 1   //打开 LED 灯

输入上述命令以后观察 I.MX6U-ALPHA 开发板上的红色 LED 灯是否点亮,如果点亮的话说明驱动工作正常。在输入如下命令关闭 LED 灯:

./ledApp /dev/led 0   //关闭 LED 灯

如果要卸载驱动的话输入如下命令即可:

rmmod led.ko

至此,我们成功编写了第一个真正的 Linux 驱动设备程序。

         本期的内容到这就结束了,如果觉得文章不错,可以点赞、收藏和关注哦,谢谢大家收看,下期再见!


         关于更多嵌入式C语言、FreeRTOS、RT-Thread、Linux应用编程、linux驱动等相关知识,关注公众号【嵌入式Linux知识共享】,后续精彩内容及时收看了解。

猜你喜欢

转载自blog.csdn.net/Wang_XB_3434/article/details/131776911