Java面试题总结(二):Java多线程

1.进程和线程的区别,进程间如何通信

进程:系统运行的基本单位,进程在运行过程中都是相互独立,但是线程之间运行可以相互影响。

线程:独立运行的最小单位,一个进程包含多个线程且它们共享同一进程内的系统资源

进程间通过管道、 共享内存、信号量机制、消息队列通信

2. 什么是线程上下文切换

当一个线程被剥夺cpu使用权时,切换到另外一个线程执行

3.什么是死锁

死锁指多个线程在执行过程中,因争夺资源造成的一种相互等待的僵局

4.死锁的必要条件

互斥条件:同一资源同时只能由一个线程读取

不可抢占条件:不能强行剥夺线程占有的资源

请求和保持条件:请求其他资源的同时对自己手中的资源保持不放

循环等待条件:在相互等待资源的过程中,形成一个闭环

想要预防死锁,只需要破坏其中一个条件即可,比如使用定时锁、尽量让线程用相同的加锁顺序,还可以用银行家算法可以预防死锁

5.Synchronized和lock的区别

(1)synchronized是关键字,lock是一个类

(2) synchronized在发生异常时会自动释放锁,lock需要手动释放锁

(3)synchronized是可重入锁、非公平锁、不可中断锁,lock的ReentrantLock是可重入锁,可中断锁,可以是公平锁也可以是非公平锁

(4)synchronized是JVM层次通过监视器实现的,Lock是通过AQS实现的

6.什么是AQS锁?

AQS是一个抽象类,可以用来构造锁和同步类,如ReentrantLock,Semaphore,CountDownLatch,CyclicBarrier。

AQS的原理是,AQS内部有三个核心组件,一个是state代表加锁状态初始值为0,一个是获取到锁的线程,还有一个阻塞队列。当有线程想获取锁时,会以CAS的形式将state变为1,CAS成功后便将加锁线程设为自己。当其他线程来竞争锁时会判断state是不是0,不是0再判断加锁线程是不是自己,不是的话就把自己放入阻塞队列。这个阻塞队列是用双向链表实现的

可重入锁的原理就是每次加锁时判断一下加锁线程是不是自己,是的话state+1,释放锁的时候就将state-1。当state减到0的时候就去唤醒阻塞队列的第一个线程。

7.为什么AQS使用的双向链表?

因为有一些线程可能发生中断 ,而发生中断时候就需要在同步阻塞队列中删除掉,这个时候用双向链表方便删除掉中间的节点

8.有哪些常见的AQS锁

AQS分为独占锁和共享锁

ReentrantLock(独占锁):可重入,可中断,可以是公平锁也可以是非公平锁,非公平锁就是会通过两次CAS去抢占锁,公平锁会按队列顺序排队

Semaphore(信号量):设定一个信号量,当调用acquire()时判断是否还有信号,有就获取一个信号量,没有就阻塞等待其他线程释放信号量,当调用release()时释放一个信号量,唤醒阻塞线程。

应用场景:允许多个线程访问某个临界资源时,如上下车,买卖票

CountDownLatch(倒计数器):给计数器设置一个初始值,当调用CountDown()时计数器减一,当调用await() 时判断计数器是否归0,不为0就阻塞,直到计数器为0。

应用场景:启动一个服务时,主线程需要等待多个组件加载完毕,之后再继续执行

CyclicBarrier(循环栅栏):给计数器设置一个目标值,当调用await() 时会计数+1并判断计数器是否达到目标值,未达到就阻塞,直到计数器达到目标值

应用场景:多线程计算数据,最后合并计算结果的应用场景

9.sleep()和wait()的区别

(1)wait()是Object的方法,sleep()是Thread类的方法

(2)wait()会释放锁,sleep()不会释放锁

(3)wait()要在同步方法或者同步代码块中执行,sleep()没有限制

(4)wait()要调用notify()或notifyall()唤醒,sleep()自动唤醒

10.yield()和join()区别

yield()调用后线程进入就绪状态

A线程中调用B线程的join() ,则B执行完前A进入阻塞状态

11.线程池七大参数

核心线程数:线程池中的基本线程数量

最大线程数:当阻塞队列满了之后,逐一启动

最大线程的存活时间:当阻塞队列的任务执行完后,最大线长的回收时间

最大线程的存活时间单位

阻塞队列:当核心线程满后,后面来的任务都进入阻塞队列

线程工厂:用于生产线程

任务拒绝策略:阻塞队列满后,拒绝任务,有四种策略(1)抛异常(2)丢弃任务不抛异常(3)打回任务(4)尝试与最老的线程竞争

12.Java内存模型

JMM(Java内存模型 )屏蔽了各种硬件和操作系统的内存访问差异,实现让Java程序在各平台下都能达到一致的内存访问效果,它定义了JVM如何将程序中的变量在主存中读取

具体定义为:所有变量都存在主存中,主存是线程共享区域;每个线程都有自己独有的工作内存,线程想要操作变量必须从主从中copy变量到自己的工作区,每个线程的工作内存是相互隔离的

由于主存与工作内存之间有读写延迟,且读写不是原子性操作,所以会有线程安全问题

13.保证并发安全的三大特性?

原子性:一次或多次操作在执行期间不被其他线程影响

可见性:当一个线程在工作内存修改了变量,其他线程能立刻知道

有序性:JVM对指令的优化会让指令执行顺序改变,有序性是禁止指令重排

14.volatile

保证变量的可见性和有序性,不保证原子性。使用了 volatile 修饰变量后,在变量修改后会立即同步到主存中,每次用这个变量前会从主存刷新。

单例模式双重校验锁变量为什么使用 volatile 修饰? 禁止 JVM 指令重排序,new Object()分为三个步骤:为实例对象分配内存,用构造器初始化成员变量,将实例对象引用指向分配的内存;实例对象在分配内存后实才不为null。如果分配内存后还未初始化就先将实例对象指向了内存,那么此时最外层的if会判断实例对象已经不等于null就直接将实例对象返回。而此时初始化还没有完成。

15.线程使用方式

(1)继承 Tread 类

(2)实现 Runnable 接口

(3)实现 Callable 接口:带有返回值

(4)线程池创建线程

16.ThreadLocal原理

原理是为每个线程创建变量副本,不同线程之间不可见,保证线程安全。每个线程内部都维护了一个Map,key为threadLocal实例,value为要保存的副本。
但是使用ThreadLocal会存在内存泄露问题,因为key为弱引用,而value为强引用,每次gc时key都会回收,而value不会被回收。所以为了解决内存泄漏问题,可以在每次使用完后删除value或者使用static修饰ThreadLocal,可以随时获取value

17.什么是CAS锁

CAS锁可以保证原子性,思想是更新内存时会判断内存值是否被别人修改过,如果没有就直接更新。如果被修改,就重新获取值,直到更新完成为止。这样的缺点是

(1)只能支持一个变量的原子操作,不能保证整个代码块的原子操作

(2)CAS频繁失败导致CPU开销大

(3)ABS问题:线程1和线程2同时去修改一个变量,将值从A改为B,但线程1突然阻塞,此时线程2将A改为B,然后线程3又将B改成A,此时线程1将A又改为B,这个过程线程2是不知道的,这就是ABA问题,可以通过版本号或时间戳解决

18.Synchronized锁原理和优化

Synchronize是通过对象头的markwordk来表明监视器的,监视器本质是依赖操作系统的互斥锁实现的。操作系统实现线程切换要从用户态切换为核心态,成本很高,此时这种锁叫重量级锁,在JDK1.6以后引入了偏向锁、轻量级锁、重量级锁

偏向锁:当一段代码没有别的线程访问,此时线程去访问会直接获取偏向锁

轻量级锁:当锁是偏向锁时,有另外一个线程来访问,会升级为轻量级锁。线程会通过CAS方式获取锁,不会阻塞,提高性能,

重量级锁:轻量级锁自旋一段时间后线程还没有获取到锁,会升级为重量级锁,重量级锁时,来竞争锁的所有线程都会阻塞,性能降低

注意,锁只能升级不能降级

19.如何根据 CPU 核心数设计线程池线程数量

IO 密集型:线程中十分消耗Io的线程数*2
CPU密集型: cpu线程数量

20.AtomicInteger的使用场景

AtomicInteger是一个提供原子操作的Integer类,使用CAS+volatile实来现线程安全的数值操作。

因为volatile禁止了jvm的排序优化,所以它不适合在并发量小的时候使用,只适合在一些高并发程序中使用

在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/weixin_44816664/article/details/133922640
今日推荐