【数据结构】栈之顺序栈

public class SequenceStack<T> {

    private int DEFAULT_SIZE = 10;
    // 保存数组的长度
    private int capacity;
    // 定义当底层数组容量不够时,每次增加的数组的长度
    private int capacityIncrement = 0;
    // 定义一个数组用于保存顺序栈的元素
    private Object[] elementData;
    // 保存顺序栈中元素的当前个数
    private int size = 0;
    // 以默认数组长度创建空顺序栈
    public SequenceStack() {
        capacity = DEFAULT_SIZE;
        elementData = new Object[capacity];
    }
    // 以一个初始化元素来创建顺序栈
    public SequenceStack(T element) {
        this();
        elementData[0] = element;
        size++;
    }
    /**
     * 以指定长度的数组来创建顺序栈
     * @param element 指定顺序栈中第一个元素
     * @param initSize 指定顺序栈底层数组的长度
     */
    public SequenceStack(T element, int initSize) {
       this.capacity = initSize;
       elementData = new Object[capacity];
       elementData[0] = element;
       size++;
    }
    /**
     * 以指定长度的数组来创建顺序栈
     * @param element 指定顺序栈中第一个元素
     * @param initSize 指定顺序栈底层数组的长度
     * @param capacityIncrement 指定当顺序栈底层数组的长度不够时,底层数组每次增加的长度
     */
    public SequenceStack(T element, int initSize, int capacityIncrement) {
        this.capacity = initSize;
        this.capacityIncrement = capacityIncrement;
        elementData = new Object[capacity];
        elementData[0] = element;
        size++;
    }
    // 获取顺序栈的大小
    public int length() {
        return size;
    }
    // 入栈
    public void push(T element) {
        ensureCapacity(size + 1);
        elementData[size++] = element;
    }
    private void ensureCapacity(int minCapacity) {
        // 如果数组的原有长度小于目前所需的长度
        if (minCapacity > capacity) {
            if (capacityIncrement > 0) {
                while (capacity < minCapacity) {
                    capacity += capacityIncrement;
                }
            } else {
                while (capacity < minCapacity) {
                    capacity <<= 1;
                }
            }
            elementData = Arrays.copyOf(elementData, capacity);
        }
    }
    // 出栈
    public T pop() {
        T oldValue = (T) elementData[size - 1];
        // 释放栈顶元素
        elementData[--size] = null;
        return oldValue;
    }
    // 返回栈顶元素,但不删除栈顶元素
    public T peek() {
        return (T)elementData[size - 1];
    }
    // 判断顺序栈是否为空栈
    public boolean empty() {
        return size == 0;
    }
    // 清空顺序栈
    public void clear() {
        Arrays.fill(elementData, null);
        size = 0;
    }
    public String toString() {
        if (size == 0) {
            return "[]";
        } else {
            StringBuilder sb = new StringBuilder("[");
            for (int i = size - 1; i > -1; i--) {
                sb.append(elementData[i].toString() + ", ");
            }
            int len = sb.length();
            return sb.delete(len - 2, len).append("]").toString();
        }
    }
}
public class SequenceStackTest {
    public static void main(String[] args) {
        SequenceStack<String> stack = new SequenceStack<String>();
        stack.push("aaaa");
        stack.push("bbbb");
        stack.push("cccc");
        stack.push("dddd");
        System.out.println("初始化后列表元素:" + stack.toString());
        System.out.println("访问栈顶元素:" + stack.peek());
        System.out.println("第一次弹出栈顶元素:" + stack.pop());
        System.out.println("第一次pop之后的栈元素:" + stack.toString());
        System.out.println("第二次弹出栈顶元素: " + stack.pop());
        System.out.println("两次pop之后的栈元素:" + stack.toString());
    }
}

猜你喜欢

转载自my.oschina.net/u/3545495/blog/1647872