【Linux内核源码】进程管理模块

一:Linux内核目录结构

arch:不同平台体系结构的相关代码
block:设备驱动
documentation:描述模块功能和协议规范
drivers:驱动程序(USB总线、PCI总线、网上卡、显卡等)
fs:虚拟文件系统VFS代码
include:内核源码依赖的大部头文件
init:内核初始化代码,直接关联到内存积组件入口
ipc:进程间通信实现
kernel:内核核心代码(进程管理、IRQ管理等)
lib:C标准库的子集
licenses:Linux内核根据Licenses/preferred/GPL-2.0中提供GNU通用公共许可版本2
mm:内存管理相关实现操作
net:网络协议代码(TCP、IPv6、Wifi等)
samples:内核实例代码
sound:声卡驱动源码
tools:与内核交互
usr:用户打包和压缩内核的实现的源码
virt:/kvm虚拟化目录相关实现

二.进程概念

1.进程

操作系统作为硬件的使用层,提供使用硬件资源的能力,进程作为操作系统使用层,提供使用操作系统抽象出的资源层的能力。
进程:是指计算机中已运行的程序。进程本身不是基本的运行单位,而是线程的容器。程序本身只是指令、数据及其组织形式的描述,进程才是程序(那些指令和数据)的真正运行实例。
Linux内核把进程叫做任务(task),进程的虚拟地址空间可分为用户虚拟地址空间和内核虚拟地址空间,所有进程共享内核虚拟地址空间,每个进程有独立的用户虚拟地址空间。

2.Linux进程状态命令

ps命令用于输出当前系统的进程状态。显示瞬间进程的状态,并不是动态连续;如果我们想对进程进行实时进程监控就top命令。

3.进程生命周期

Linux操作系统属于多任务操作系统,系统中的每个进程能够分时复用CPU时间片,通过有效的进程调度策略实现多任务并行执行。而进程在被CPU调度运行,等待CPU资源分配以及等待外部事件时会属于不同的状态。进程状态如下:

创建状态:创建新进程;
就绪状态:进程获取可以运作所有资源及准备相关条件;
执行状态:进程正在CPU中执行操作;
阻塞状态:进程因等待某些资源而被跳出CPU;
终止状态:进程消亡。

4.进程有两种特殊形式

没有用户虚拟地址空间的进程叫内核线程,共享用户虚拟地址空间的进程叫用户线程。共享同一个用户虚拟地址空间的所有用户线程叫线程组。

C语言标准库进程       Linux内核进程
包括多个线程的进程      线程组
只有一个线程的进程       任务或进程
线程             共享用户虚拟地址空间的进程

5.Linux内核提供API函数来设置进程状态

TASK_RUNING(可运行状态或者可就绪状态)
TASK_INTERRUPTIBLE(可中断睡眠状态,又叫浅睡眠状态)
TASK_UNINTERUPTIBLE(不可中断状态,又叫深度睡眠状态,我们可以通过ps命令查看被标记为D状态的进程)
TASK_STOPPED(终止状态)
EXIT_ZOMBIE(僵尸状态)

6.进程优先级

进程调度策略和优先级
int prio;
int static_prio;
int normal_prio;
unsigned int rt_priority;

  1. prio:进程的当前优先级。这是一个动态值,会根据进程的行为和调度算法进行调整。

  2. static_prio:进程的静态优先级。这是进程的基本优先级,一般在创建进程时指定,并且不会随着进程的行为而改变。

  3. normal_prio:进程的普通优先级。这是优先级的一个中间值,用于确保进程在运行队列中的相对顺序。

  4. rt_priority:实时进程的优先级。对于实时进程,可以设置一个较高的优先级,以便它们能够在其他进程之前得到更多的CPU时间。

进程调度策略可以是多种类型,常见的包括:

  1. 先进先出(FIFO):按照进程到达的顺序进行调度,先到达的进程先执行。

  2. 轮转(Round Robin):每个进程被分配一个时间片,在时间片用完后,进程被暂停并排队等待下一个时间片。

  3. 最短作业优先(SJF):选择剩余执行时间最短的进程,以最小化平均等待时间。

  4. 最高响应比优先(HRRN):根据响应比来选择下一个执行的进程,响应比定义为等待时间加上服务时间的比值。

  5. 实时调度策略:用于实时任务,包括实时先进先出(RT-FIFO)和实时轮转(RT-RR)等。

7.内核线程

独立运行在内核空间的进程,与普通用户进程区别在于内核线程没有独立的进程地址空间。task_struct数据结构里面有一个成员指针mm设置为NULL,它只能运行在内核空间。

三.进程调度CFS及调度类

1.调度

按照某种调度的算法设计,从进程的就绪队列当中选取进程分配CPU,主要是协调对CPU等等相关的资源使用。进程调度目的:最大限度利用CPU时间。如果调度器支持就绪状态切换到执行状态,同时支持执行状态切换到就绪状态,称该调度器为抢占式调度器。

2.调度器类可分为五种

extern const struct sched_class stop_sched_class; // 停机调度类
extern const struct sched_class dl_sched_class; // 限期调度类
extern const struct sched_class rt_sched_class; // 实时调度类
extern const struct sched_class fair_sched_class; // 公平调度类
extern const struct sched_class idle_sched_class; // 空闲调度类

这5种调度类的优先级从高到低依次为:停机调度类–>限期调度类–>实时调度类–>公平调度类–>空闲调度类。

3.进程分类

实时进程:优先级高、需要立即被执行的进程。
普通进程:优先级低、更长执行时间的进程。
进程的优先级是一个0–139的整数直接来表示,数字越小优先级越高,其中优先级0-99留给实时进程,100-139留给普通进程。

4.内核调度策略

Linux内核提供一些调度策略供用户应用程序来选择调度器,Linux内核调度策略源码如下:

// Linux内核调度策略
#define SCHED_NORMAL 0 // 普通进程调度策略
#define SCHED_FIFO 1 // 实时进程调度策略
#define SCHED_RR 2 // 实时进程调度策略
#define SCHED_BATCH 3 // 普通进程调度策略
/* SCHED_ISO: reserved but not implemented yet */
#define SCHED_IDLE 5 // 普通进程调度策略
#define SCHED_DEADLINE 6 // 限期进程调度策略

四.RCU机制及内存优化屏障

1.RCU机制

应用场景是链表,有效地提高遍历读取数据的效率,读取链表有成员数据时候通常只需要rcu_read_lock(),允许多个线程同时读取链表,并且允许一个线程同时修改链表。

2.RCU读-复制-更新

读拷贝更新(RCU)模式添加链表项对应函数list_add_rcu(…)。
读拷贝更新(RCU)模式删除链表项对应函数list_del_rcu(…)。读拷贝更新(RCU)模式更新链表项list_repalce_rcu(…)。

在整个操作过程中,有时要防止编译器和CPU优先代码执行顺序,smp_wmb()保证在它之前的两行代码执行完毕之后再执行后两行。

3.编译器优化

为提高系统性能,编译器在不影响逻辑的情况下会调整指令的执行顺序。

4.CPU执行优化

为提高流水线的性能,CPU的乱序执行可能会让后面的寄存器冲突的指令先于前面指令完成。

5.内存屏障

内存屏障是一种保证内存访问顺序的方法,解决内存访问乱序问题.

6GCC编译器定义的宏

/* The “volatile” is due to gcc bugs */
#define barrier() asm volatile(“”: : :“memory”)

关键字为__volatile__告诉编译器:禁止优化代码,不需要改变barrier()前面的代码块、barrier和后面代码块这3个代码块的顺序。

7.处理器内存屏障

处理器内存屏障解决CPU之间的内存访问乱序问题和处理器访问外围设备的乱序问题。

内存屏障类型  强制性的内存屏障  SMP内存屏障
通用内存屏障      mb()         smp_mb()
写内存屏障       wmb()        smp_wmb()
读内存屏障       rmb()        smp_rmb()
数据依赖屏障   read_barrier_depends()  smp_read_barrier_depends()

除数据依赖屏障之外,所有处理器内存屏障隐含编译器优化屏障。

三.task_struct数据结构分析

进程是操作系统调度的一个实体,需要对进程所必须资源做一个抽象化,此抽象化为进程控制块PCB,Process Control BLock),在Linux内核里面采用task_struct结构体来描述进程控制块。Linux内核涉及进程和程序的所有算法都围绕名为task_struct的数据结构而建立操作。具体Linux内核源码task_struct结构体核心成员如下:

// 进程描述符
struct task_struct {
#ifdef CONFIG_THREAD_INFO_IN_TASK
	/*
	 * For reasons of header soup (see current_thread_info()), this
	 * must be the first element of task_struct.
	 */
	struct thread_info		thread_info;
#endif
	/* -1 unrunnable, 0 runnable, >0 stopped: */
	volatile long			state; // 判断进程的状态标志

	/*
	 * This begins the randomizable portion of task_struct. Only
	 * scheduling-critical items should be added above here.
	 */
	randomized_struct_fields_start

	void				*stack; // 指向内核栈
	refcount_t			usage;
	/* Per task flags (PF_*), defined further below: */
	unsigned int			flags;
	unsigned int			ptrace;

#ifdef CONFIG_SMP
	struct llist_node		wake_entry;
	int				on_cpu;
#ifdef CONFIG_THREAD_INFO_IN_TASK
	/* Current CPU: */
	unsigned int			cpu;
#endif
	unsigned int			wakee_flips;
	unsigned long			wakee_flip_decay_ts;
	struct task_struct		*last_wakee;

	/*
	 * recent_used_cpu is initially set as the last CPU used by a task
	 * that wakes affine another task. Waker/wakee relationships can
	 * push tasks around a CPU where each wakeup moves to the next one.
	 * Tracking a recently used CPU allows a quick search for a recently
	 * used CPU that may be idle.
	 */
	int				recent_used_cpu;
	int				wake_cpu;
#endif
	int				on_rq;

	// 下面4个成功为:进程调度策略和优先级
	int				prio;
	int				static_prio;
	int				normal_prio;
	unsigned int			rt_priority;

	const struct sched_class	*sched_class;
	struct sched_entity		se;
	struct sched_rt_entity		rt;
#ifdef CONFIG_CGROUP_SCHED
	struct task_group		*sched_task_group;
#endif
	struct sched_dl_entity		dl;

#ifdef CONFIG_UCLAMP_TASK
	/* Clamp values requested for a scheduling entity */
	struct uclamp_se		uclamp_req[UCLAMP_CNT];
	/* Effective clamp values used for a scheduling entity */
	struct uclamp_se		uclamp[UCLAMP_CNT];
#endif

#ifdef CONFIG_PREEMPT_NOTIFIERS
	/* List of struct preempt_notifier: */
	struct hlist_head		preempt_notifiers;
#endif

#ifdef CONFIG_BLK_DEV_IO_TRACE
	unsigned int			btrace_seq;
#endif

	unsigned int			policy;
	int				nr_cpus_allowed;
	const cpumask_t			*cpus_ptr;
	cpumask_t			cpus_mask;

#ifdef CONFIG_PREEMPT_RCU
	int				rcu_read_lock_nesting;
	union rcu_special		rcu_read_unlock_special;
	struct list_head		rcu_node_entry;
	struct rcu_node			*rcu_blocked_node;
#endif /* #ifdef CONFIG_PREEMPT_RCU */

#ifdef CONFIG_TASKS_RCU
	unsigned long			rcu_tasks_nvcsw;
	u8				rcu_tasks_holdout;
	u8				rcu_tasks_idx;
	int				rcu_tasks_idle_cpu;
	struct list_head		rcu_tasks_holdout_list;
#endif /* #ifdef CONFIG_TASKS_RCU */

	struct sched_info		sched_info;

	struct list_head		tasks;
#ifdef CONFIG_SMP
	struct plist_node		pushable_tasks;
	struct rb_node			pushable_dl_tasks;
#endif



	// 这两个指针指向内存描述符。
	// 进程:mm/active_mm 指向同一个内存描述符
	// 内核线程:mm是空指针
	// 当内核线程执行时,active_mm指向从进程借用内存描述符
	struct mm_struct		*mm;
	struct mm_struct		*active_mm;




	/* Per-thread vma caching: */
	struct vmacache			vmacache;

#ifdef SPLIT_RSS_COUNTING
	struct task_rss_stat		rss_stat;
#endif
	int				exit_state;
	int				exit_code;
	int				exit_signal;
	/* The signal sent when the parent dies: */
	int				pdeath_signal;
	/* JOBCTL_*, siglock protected: */
	unsigned long			jobctl;

	/* Used for emulating ABI behavior of previous Linux versions: */
	unsigned int			personality;

	/* Scheduler bits, serialized by scheduler locks: */
	unsigned			sched_reset_on_fork:1;
	unsigned			sched_contributes_to_load:1;
	unsigned			sched_migrated:1;
	unsigned			sched_remote_wakeup:1;
#ifdef CONFIG_PSI
	unsigned			sched_psi_wake_requeue:1;
#endif

	/* Force alignment to the next boundary: */
	unsigned			:0;

	/* Unserialized, strictly 'current' */

	/* Bit to tell LSMs we're in execve(): */
	unsigned			in_execve:1;
	unsigned			in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
	unsigned			restore_sigmask:1;
#endif
#ifdef CONFIG_MEMCG
	unsigned			in_user_fault:1;
#endif
#ifdef CONFIG_COMPAT_BRK
	unsigned			brk_randomized:1;
#endif
#ifdef CONFIG_CGROUPS
	/* disallow userland-initiated cgroup migration */
	unsigned			no_cgroup_migration:1;
	/* task is frozen/stopped (used by the cgroup freezer) */
	unsigned			frozen:1;
#endif
#ifdef CONFIG_BLK_CGROUP
	/* to be used once the psi infrastructure lands upstream. */
	unsigned			use_memdelay:1;
#endif

	unsigned long			atomic_flags; /* Flags requiring atomic access. */

	struct restart_block		restart_block;


	// 全局的进程号
	// 全局的线程组标识符
	pid_t				pid;
	pid_t				tgid;


#ifdef CONFIG_STACKPROTECTOR
	/* Canary value for the -fstack-protector GCC feature: */
	unsigned long			stack_canary;
#endif
	/*
	 * Pointers to the (original) parent process, youngest child, younger sibling,
	 * older sibling, respectively.  (p->father can be replaced with
	 * p->real_parent->pid)
	 */

	/* Real parent process: */
	struct task_struct __rcu	*real_parent; // 指向真实的父进程

	/* Recipient of SIGCHLD, wait4() reports: */ // 指向父进程
	struct task_struct __rcu	*parent;

	/*
	 * Children/sibling form the list of natural children:
	 */
	struct list_head		children;
	struct list_head		sibling;
	struct task_struct		*group_leader; // 指向线程组的组长

	/*
	 * 'ptraced' is the list of tasks this task is using ptrace() on.
	 *
	 * This includes both natural children and PTRACE_ATTACH targets.
	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
	 */
	struct list_head		ptraced;
	struct list_head		ptrace_entry;

	/* PID/PID hash table linkage. */
	struct pid			*thread_pid;
	struct hlist_node		pid_links[PIDTYPE_MAX];
	struct list_head		thread_group;
	struct list_head		thread_node;

	struct completion		*vfork_done;

	/* CLONE_CHILD_SETTID: */
	int __user			*set_child_tid;

	/* CLONE_CHILD_CLEARTID: */
	int __user			*clear_child_tid;

	u64				utime;
	u64				stime;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
	u64				utimescaled;
	u64				stimescaled;
#endif
	u64				gtime;
	struct prev_cputime		prev_cputime;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
	struct vtime			vtime;
#endif

#ifdef CONFIG_NO_HZ_FULL
	atomic_t			tick_dep_mask;
#endif
	/* Context switch counts: */
	unsigned long			nvcsw;
	unsigned long			nivcsw;

	/* Monotonic time in nsecs: */
	u64				start_time;

	/* Boot based time in nsecs: */
	u64				start_boottime;

	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
	unsigned long			min_flt;
	unsigned long			maj_flt;

	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
	struct posix_cputimers		posix_cputimers;

	/* Process credentials: */

	/* Tracer's credentials at attach: */
	const struct cred __rcu		*ptracer_cred;

	/* Objective and real subjective task credentials (COW): */
	const struct cred __rcu		*real_cred;

	/* Effective (overridable) subjective task credentials (COW): */
	const struct cred __rcu		*cred;

#ifdef CONFIG_KEYS
	/* Cached requested key. */
	struct key			*cached_requested_key;
#endif

	/*
	 * executable name, excluding path.
	 *
	 * - normally initialized setup_new_exec()
	 * - access it with [gs]et_task_comm()
	 * - lock it with task_lock()
	 */
	char				comm[TASK_COMM_LEN];

	struct nameidata		*nameidata;

// 用于UNIX系统:信号量和共享内存
#ifdef CONFIG_SYSVIPC
	struct sysv_sem			sysvsem;
	struct sysv_shm			sysvshm;
#endif

#ifdef CONFIG_DETECT_HUNG_TASK
	unsigned long			last_switch_count;
	unsigned long			last_switch_time;
#endif
	/* Filesystem information: */
	struct fs_struct		*fs; // 该成员文件系统信息,主要是进程的根目录和当前工作目录

	/* Open file information: */
	struct files_struct		*files; // 打开文件列表

	/* Namespaces: */
	struct nsproxy			*nsproxy;

	/* Signal handlers: */
	struct signal_struct		*signal;
	struct sighand_struct __rcu		*sighand;
	sigset_t			blocked;
	sigset_t			real_blocked;
	/* Restored if set_restore_sigmask() was used: */
	sigset_t			saved_sigmask;
	struct sigpending		pending;
	unsigned long			sas_ss_sp;
	size_t				sas_ss_size;
	unsigned int			sas_ss_flags;

	struct callback_head		*task_works;

#ifdef CONFIG_AUDIT
#ifdef CONFIG_AUDITSYSCALL
	struct audit_context		*audit_context;
#endif
	kuid_t				loginuid;
	unsigned int			sessionid;
#endif
	struct seccomp			seccomp;

	/* Thread group tracking: */
	u64				parent_exec_id;
	u64				self_exec_id;

	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
	spinlock_t			alloc_lock;

	/* Protection of the PI data structures: */
	raw_spinlock_t			pi_lock;

	struct wake_q_node		wake_q;

#ifdef CONFIG_RT_MUTEXES
	/* PI waiters blocked on a rt_mutex held by this task: */
	struct rb_root_cached		pi_waiters;
	/* Updated under owner's pi_lock and rq lock */
	struct task_struct		*pi_top_task;
	/* Deadlock detection and priority inheritance handling: */
	struct rt_mutex_waiter		*pi_blocked_on;
#endif

#ifdef CONFIG_DEBUG_MUTEXES
	/* Mutex deadlock detection: */
	struct mutex_waiter		*blocked_on;
#endif

#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
	int				non_block_count;
#endif

#ifdef CONFIG_TRACE_IRQFLAGS
	unsigned int			irq_events;
	unsigned long			hardirq_enable_ip;
	unsigned long			hardirq_disable_ip;
	unsigned int			hardirq_enable_event;
	unsigned int			hardirq_disable_event;
	int				hardirqs_enabled;
	int				hardirq_context;
	unsigned long			softirq_disable_ip;
	unsigned long			softirq_enable_ip;
	unsigned int			softirq_disable_event;
	unsigned int			softirq_enable_event;
	int				softirqs_enabled;
	int				softirq_context;
#endif

#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH			48UL
	u64				curr_chain_key;
	int				lockdep_depth;
	unsigned int			lockdep_recursion;
	struct held_lock		held_locks[MAX_LOCK_DEPTH];
#endif

#ifdef CONFIG_UBSAN
	unsigned int			in_ubsan;
#endif

	/* Journalling filesystem info: */
	void				*journal_info;

	/* Stacked block device info: */
	struct bio_list			*bio_list;

#ifdef CONFIG_BLOCK
	/* Stack plugging: */
	struct blk_plug			*plug;
#endif

	/* VM state: */
	struct reclaim_state		*reclaim_state;

	struct backing_dev_info		*backing_dev_info;

	struct io_context		*io_context;

#ifdef CONFIG_COMPACTION
	struct capture_control		*capture_control;
#endif
	/* Ptrace state: */
	unsigned long			ptrace_message;
	kernel_siginfo_t		*last_siginfo;

	struct task_io_accounting	ioac;
#ifdef CONFIG_PSI
	/* Pressure stall state */
	unsigned int			psi_flags;
#endif
#ifdef CONFIG_TASK_XACCT
	/* Accumulated RSS usage: */
	u64				acct_rss_mem1;
	/* Accumulated virtual memory usage: */
	u64				acct_vm_mem1;
	/* stime + utime since last update: */
	u64				acct_timexpd;
#endif
#ifdef CONFIG_CPUSETS
	/* Protected by ->alloc_lock: */
	nodemask_t			mems_allowed;
	/* Seqence number to catch updates: */
	seqcount_t			mems_allowed_seq;
	int				cpuset_mem_spread_rotor;
	int				cpuset_slab_spread_rotor;
#endif
#ifdef CONFIG_CGROUPS
	/* Control Group info protected by css_set_lock: */
	struct css_set __rcu		*cgroups;
	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
	struct list_head		cg_list;
#endif
#ifdef CONFIG_X86_CPU_RESCTRL
	u32				closid;
	u32				rmid;
#endif
#ifdef CONFIG_FUTEX
	struct robust_list_head __user	*robust_list;
#ifdef CONFIG_COMPAT
	struct compat_robust_list_head __user *compat_robust_list;
#endif
	struct list_head		pi_state_list;
	struct futex_pi_state		*pi_state_cache;
	struct mutex			futex_exit_mutex;
	unsigned int			futex_state;
#endif
#ifdef CONFIG_PERF_EVENTS
	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
	struct mutex			perf_event_mutex;
	struct list_head		perf_event_list;
#endif
#ifdef CONFIG_DEBUG_PREEMPT
	unsigned long			preempt_disable_ip;
#endif
#ifdef CONFIG_NUMA
	/* Protected by alloc_lock: */
	struct mempolicy		*mempolicy;
	short				il_prev;
	short				pref_node_fork;
#endif
#ifdef CONFIG_NUMA_BALANCING
	int				numa_scan_seq;
	unsigned int			numa_scan_period;
	unsigned int			numa_scan_period_max;
	int				numa_preferred_nid;
	unsigned long			numa_migrate_retry;
	/* Migration stamp: */
	u64				node_stamp;
	u64				last_task_numa_placement;
	u64				last_sum_exec_runtime;
	struct callback_head		numa_work;

	/*
	 * This pointer is only modified for current in syscall and
	 * pagefault context (and for tasks being destroyed), so it can be read
	 * from any of the following contexts:
	 *  - RCU read-side critical section
	 *  - current->numa_group from everywhere
	 *  - task's runqueue locked, task not running
	 */
	struct numa_group __rcu		*numa_group;

	/*
	 * numa_faults is an array split into four regions:
	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
	 * in this precise order.
	 *
	 * faults_memory: Exponential decaying average of faults on a per-node
	 * basis. Scheduling placement decisions are made based on these
	 * counts. The values remain static for the duration of a PTE scan.
	 * faults_cpu: Track the nodes the process was running on when a NUMA
	 * hinting fault was incurred.
	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
	 * during the current scan window. When the scan completes, the counts
	 * in faults_memory and faults_cpu decay and these values are copied.
	 */
	unsigned long			*numa_faults;
	unsigned long			total_numa_faults;

	/*
	 * numa_faults_locality tracks if faults recorded during the last
	 * scan window were remote/local or failed to migrate. The task scan
	 * period is adapted based on the locality of the faults with different
	 * weights depending on whether they were shared or private faults
	 */
	unsigned long			numa_faults_locality[3];

	unsigned long			numa_pages_migrated;
#endif /* CONFIG_NUMA_BALANCING */

#ifdef CONFIG_RSEQ
	struct rseq __user *rseq;
	u32 rseq_sig;
	/*
	 * RmW on rseq_event_mask must be performed atomically
	 * with respect to preemption.
	 */
	unsigned long rseq_event_mask;
#endif

	struct tlbflush_unmap_batch	tlb_ubc;

	union {
		refcount_t		rcu_users;
		struct rcu_head		rcu;
	};

	/* Cache last used pipe for splice(): */
	struct pipe_inode_info		*splice_pipe;

	struct page_frag		task_frag;

#ifdef CONFIG_TASK_DELAY_ACCT
	struct task_delay_info		*delays;
#endif

#ifdef CONFIG_FAULT_INJECTION
	int				make_it_fail;
	unsigned int			fail_nth;
#endif
	/*
	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
	 * balance_dirty_pages() for a dirty throttling pause:
	 */
	int				nr_dirtied;
	int				nr_dirtied_pause;
	/* Start of a write-and-pause period: */
	unsigned long			dirty_paused_when;

#ifdef CONFIG_LATENCYTOP
	int				latency_record_count;
	struct latency_record		latency_record[LT_SAVECOUNT];
#endif
	/*
	 * Time slack values; these are used to round up poll() and
	 * select() etc timeout values. These are in nanoseconds.
	 */
	u64				timer_slack_ns;
	u64				default_timer_slack_ns;

#ifdef CONFIG_KASAN
	unsigned int			kasan_depth;
#endif

#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	/* Index of current stored address in ret_stack: */
	int				curr_ret_stack;
	int				curr_ret_depth;

	/* Stack of return addresses for return function tracing: */
	struct ftrace_ret_stack		*ret_stack;

	/* Timestamp for last schedule: */
	unsigned long long		ftrace_timestamp;

	/*
	 * Number of functions that haven't been traced
	 * because of depth overrun:
	 */
	atomic_t			trace_overrun;

	/* Pause tracing: */
	atomic_t			tracing_graph_pause;
#endif

#ifdef CONFIG_TRACING
	/* State flags for use by tracers: */
	unsigned long			trace;

	/* Bitmask and counter of trace recursion: */
	unsigned long			trace_recursion;
#endif /* CONFIG_TRACING */

#ifdef CONFIG_KCOV
	/* See kernel/kcov.c for more details. */

	/* Coverage collection mode enabled for this task (0 if disabled): */
	unsigned int			kcov_mode;

	/* Size of the kcov_area: */
	unsigned int			kcov_size;

	/* Buffer for coverage collection: */
	void				*kcov_area;

	/* KCOV descriptor wired with this task or NULL: */
	struct kcov			*kcov;

	/* KCOV common handle for remote coverage collection: */
	u64				kcov_handle;

	/* KCOV sequence number: */
	int				kcov_sequence;
#endif

#ifdef CONFIG_MEMCG
	struct mem_cgroup		*memcg_in_oom;
	gfp_t				memcg_oom_gfp_mask;
	int				memcg_oom_order;

	/* Number of pages to reclaim on returning to userland: */
	unsigned int			memcg_nr_pages_over_high;

	/* Used by memcontrol for targeted memcg charge: */
	struct mem_cgroup		*active_memcg;
#endif

#ifdef CONFIG_BLK_CGROUP
	struct request_queue		*throttle_queue;
#endif

#ifdef CONFIG_UPROBES
	struct uprobe_task		*utask;
#endif
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
	unsigned int			sequential_io;
	unsigned int			sequential_io_avg;
#endif
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
	unsigned long			task_state_change;
#endif
	int				pagefault_disabled;
#ifdef CONFIG_MMU
	struct task_struct		*oom_reaper_list;
#endif
#ifdef CONFIG_VMAP_STACK
	struct vm_struct		*stack_vm_area;
#endif
#ifdef CONFIG_THREAD_INFO_IN_TASK
	/* A live task holds one reference: */
	refcount_t			stack_refcount;
#endif
#ifdef CONFIG_LIVEPATCH
	int patch_state;
#endif
#ifdef CONFIG_SECURITY
	/* Used by LSM modules for access restriction: */
	void				*security;
#endif

#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
	unsigned long			lowest_stack;
	unsigned long			prev_lowest_stack;
#endif

	/*
	 * New fields for task_struct should be added above here, so that
	 * they are included in the randomized portion of task_struct.
	 */
	randomized_struct_fields_end

	/* CPU-specific state of this task: */
	struct thread_struct		thread;

	/*
	 * WARNING: on x86, 'thread_struct' contains a variable-sized
	 * structure.  It *MUST* be at the end of 'task_struct'.
	 *
	 * Do not put anything below here!
	 */
};

猜你喜欢

转载自blog.csdn.net/m0_68678128/article/details/134847443