Leetcode刷题笔记--Hot91--100

目录

1--汉明距离(461)

2--目标和(494)

3--把二叉搜索树转换为累加树(538)

4--二叉树的直径(543)

5--和为L的子数组(560)

6--最短无序连续子数组(581)

7--合并二叉树(617)

8--任务调度器(621)

9--回文子串(647)

10--每日温度(739)


1--汉明距离(461)

主要思路:

      按位异或,统计1的个数;  

#include <iostream>
#include <vector>

class Solution {
public:
    int hammingDistance(int x, int y) {
        int z = x ^ y; // 按位异或
        int res = 0;
        while(z){
            if((z % 2) == 1) res++;
            z = z >> 1; // 右移
        }
        return res;
    }
};

int main(int argc, char* argv[]){
    // x = 1, y = 4
    int x = 1, y = 4;
    Solution S1;
    int res = S1.hammingDistance(x, y);
    std::cout << res << std::endl;
    return 0;
}

2--目标和(494)

主要思路:
        转化为 0-1 背包问题,一部分数值连同 target 转化为背包容量,剩余一部分数值转化为物品,求解恰好装满背包容量的方法数;

        dp[j] 表示背包容量为 j 时,装满背包的方法数;

        状态转移方程:dp[j] += dp[j - nums[i]],其实质是:当背包已经装了nums[i]时,剩余容量为 j - nums[i],此时装满剩余容量的方法数为 dp[j - nums[i]],遍历不同的 nums[i] 将方法数相加即可;

        是有点难理解。。。

#include <iostream>
#include <vector>
 
class Solution {
public:
    int findTargetSumWays(std::vector<int>& nums, int target) {
        int sum = 0;
        for(int num : nums) sum += num;
        if(sum < std::abs(target)) return 0; // 数组全部元素相加相减都不能构成target
        if((sum + target) % 2 == 1) return 0; // 不能二等分
 
        int bagsize = (sum + target) / 2;
        std::vector<int> dp(bagsize + 1, 0);
        dp[0] = 1;
        for(int i = 0; i < nums.size(); i++){ // 遍历物品
            for(int j = bagsize; j >= nums[i]; j--){ // 遍历背包容量
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[bagsize];
    }
};
 
int main(int argc, char *argv[]) {
    // nums = [1, 1, 1, 1, 1], target = 3
    std::vector<int> test = {1, 1, 1, 1, 1};
    int target = 3;
    Solution S1;
    int res = S1.findTargetSumWays(test, target);
    std::cout << res << std::endl;
	return 0;
}

3--把二叉搜索树转换为累加树(538)

主要思路:

        二叉树递归,本题的遍历顺序应该为 右→根→左;逐层向下传递数据,同时回溯逐层向上返回数据;

#include <iostream>
#include <vector>
#include <queue>

struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};

class Solution {
public:
    TreeNode* convertBST(TreeNode* root){
        dfs(root, 0);
        return root;
    }
    int dfs(TreeNode* root, int sum){
        if(root == nullptr) return sum;
        // 右
        int right = dfs(root->right, sum);
        // 根
        root->val = root->val + right;
        // 左
        int left = dfs(root->left, root->val);
        return left;
    }
};

int main(int argc, char* argv[]){
    // [4, 1, 6, 0, 2, 5, 7, null, null, null, 3, null, null, null, 8]
    TreeNode* Node1 = new TreeNode(4);
    TreeNode* Node2 = new TreeNode(1);
    TreeNode* Node3 = new TreeNode(6);
    TreeNode* Node4 = new TreeNode(0);
    TreeNode* Node5 = new TreeNode(2);
    TreeNode* Node6 = new TreeNode(5);
    TreeNode* Node7 = new TreeNode(7);
    TreeNode* Node8 = new TreeNode(3);
    TreeNode* Node9 = new TreeNode(8);

    Node1->left = Node2;
    Node1->right = Node3;
    Node2->left = Node4;
    Node2->right = Node5; 
    Node3->left = Node6;
    Node3->right = Node7;
    Node5->right = Node8;
    Node7->right = Node9;

    Solution S1;
    TreeNode* res = S1.convertBST(Node1);
    // 层次遍历打印
    std::queue<TreeNode*> q;
    q.push(res);
    while(!q.empty()){
        TreeNode* top = q.front();
        q.pop();
        if(top != nullptr){
            std::cout << top->val << " ";
        }
        else{
            std::cout << "null" << " ";
        }
        if(top != nullptr){
            q.push(top->left);
            q.push(top->right);
        }
    }
    return 0;
}

4--二叉树的直径(543)

主要思路:

        递归二叉树,对于每一个节点,递归求解左子树的结点数,右子树的结点数,向上返回最大的节点树;

        二叉树的直径等于某一个节点左右子树最大路径的总结点数,例如上图中[4, 2, 1, 3]可以理解为以 1 为根节点,其左子树路径的最大结点数为[4, 2],右子树路径的最大结点数为[3];

#include <iostream>
#include <vector>

struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};

class Solution {
public:
    int diameterOfBinaryTree(TreeNode* root) {
        int res = 1; // 路径经过的最大结点数
        dfs(root, res);
        return res - 1; // res - 1 即为直径
    }

    int dfs(TreeNode* root, int &res){
        if(root == nullptr) return 0;
        int left = dfs(root->left, res);
        int right = dfs(root->right, res);
        res = std::max(res, left + right + 1);
        return std::max(left, right) + 1;
    }
};

int main(int argc, char* argv[]){
    // root = [1, 2, 3, 4, 5]
    TreeNode* Node1 = new TreeNode(1);
    TreeNode* Node2 = new TreeNode(2);
    TreeNode* Node3 = new TreeNode(3);
    TreeNode* Node4 = new TreeNode(4);
    TreeNode* Node5 = new TreeNode(5);

    Node1->left = Node2;
    Node1->right = Node3;
    Node2->left = Node4;
    Node2->right = Node5;

    Solution S1;
    int res = S1.diameterOfBinaryTree(Node1);
    std::cout << res << std::endl;
    return 0;
}

5--和为L的子数组(560)

主要思路:

        

#include <iostream>
#include <vector>
#include <unordered_map>

class Solution {
public:
    int subarraySum(std::vector<int>& nums, int k){
        std::unordered_map<int, int> hash_map;
        hash_map[0] = 1;
        int pre = 0; // 前缀和
        int res = 0; // 返回的数目
        for(auto num : nums){
            pre += num; // 截止到当前节点的累加和
            if(hash_map.find(pre - k) != hash_map.end()){ // 存在hash_map[pre - k]的节点j,即从节点j开始到当前节点的累加和为k,匹配
                res += hash_map[pre - k];
            }
            hash_map[pre]++; // 累加和为pre的节点数+1
        }
        return res;
    }
};

int main(int argc, char* argv[]){
    // nums = [1, 1, 1], k = 2
    std::vector<int> test = {1, 1, 1};
    int k = 2;
    Solution S1;
    int res = S1.subarraySum(test, k);
    std::cout << res << std::endl;
    return 0;
}

6--最短无序连续子数组(581)

主要思路: 

#include <iostream>
#include <vector>
#include <limits.h>

class Solution {
public:
    int findUnsortedSubarray(std::vector<int>& nums) {
        int left_max = INT_MIN, right_min = INT_MAX;
        int l = -1, r = -1; // 初始化左右边界
        int n = nums.size();
        for(int i = 0; i < n; i++){
            if(nums[i] >= left_max){
                left_max = nums[i]; // 更新左边最大值
            }
            else{
                r = i; // 更新右边界
            }

            if(nums[n - i - 1] <= right_min){
                right_min = nums[n - i - 1];
            }
            else{
                l = n - i - 1; // 更新左边界
            }
        }
        return r == -1? 0 : r - l + 1;
    }
};

int main(int argc, char* argv[]){
    // nums = [2, 6, 4, 8, 10, 9, 15]
    std::vector<int> test = {2, 6, 4, 8, 10, 9, 15};
    Solution S1;
    int res = S1.findUnsortedSubarray(test);
    std::cout << res << std::endl;
    return 0;
}

7--合并二叉树(617)

主要思路:

        经典二叉树递归;

#include <iostream>
#include <vector>
#include <algorithm>
#include <queue>

struct TreeNode{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right){}
};

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {
        if(root1 == nullptr) return root2;
        if(root2 == nullptr) return root1;
        TreeNode* root = new TreeNode(root1->val + root2->val);
        root->left = mergeTrees(root1->left, root2->left);
        root->right = mergeTrees(root1->right, root2->right);
        return root;
    }
};

int main(int argc, char* argv[]){
    // root1 = [1,3,2,5], root2 = [2,1,3,null,4,null,7]
    TreeNode *Node1 = new TreeNode(1);
    TreeNode *Node2 = new TreeNode(3);
    TreeNode *Node3 = new TreeNode(2);
    TreeNode *Node4 = new TreeNode(5);

    Node1->left = Node2;
    Node1->right = Node3;
    Node2->left = Node4;

    TreeNode *Node5 = new TreeNode(2);
    TreeNode *Node6 = new TreeNode(1);
    TreeNode *Node7 = new TreeNode(3);
    TreeNode *Node8 = new TreeNode(4);
    TreeNode *Node9 = new TreeNode(7);

    Node5->left = Node6;
    Node5->right = Node7;
    Node6->right= Node8;
    Node7->right = Node9;

    Solution S1;
    TreeNode *res = S1.mergeTrees(Node1, Node5);
    std::queue<TreeNode*> q;
    q.push(res);
    while(!q.empty()){
        TreeNode* cur = q.front();
        q.pop();
        if(cur != nullptr){
            std::cout << cur->val << " ";
            q.push(cur->left);
            q.push(cur->right);
        }
        else{
            std::cout << "null" << " ";
        }
    } 
    return 0;
}

8--任务调度器(621)

主要思路:

        视频讲解参考:任务调度器

#include <iostream>
#include <vector>
#include <queue>

class Solution {
public:
    int leastInterval(std::vector<char>& tasks, int n) {
        using pii = std::pair<int, int>;
        // 就绪队列: <任务对应的数量, 任务类型> 大顶堆
        std::priority_queue<pii> pq2;

        // 冷冻队列: <上次执行时间, 任务类型> 小顶堆
        std::priority_queue<pii, std::vector<pii>, std::greater<pii>> pq1;

        std::vector<int> cnt(26); // 每种任务剩余的数量
        const int INF = 0x3f3f3f3f;
        std::vector<int> last(26, -INF); // 每种任务上次执行完的时间

        for(char c : tasks) cnt[c - 'A']++; // 初始化任务数量
        for(int i = 0; i < 26; i++) if(cnt[i]) pq2.push({cnt[i], i}); // 一开始全部处于就绪队列

        int time = 0;
        while(!pq1.empty() || !pq2.empty()){
            // 先把冷冻队列当中已就绪的任务放到就绪队列中
            while(!pq1.empty() && pq1.top().first + n < time){
                auto item = pq1.top();
                pq1.pop();
                pq2.push({cnt[item.second], item.second});
            }

            // 此时冷冻队列中的任务都非就绪,只能从就绪队列中选取任务执行
            if(!pq2.empty()){
                // 选取数量最多的任务
                auto item = pq2.top();
                pq2.pop();
                cnt[item.second]--; // 数量减1
                if(cnt[item.second]){
                    // 执行完后,将任务放到冷冻队列
                    pq1.push({time, item.second});
                }
            }
            time++;
        }
        return time;
    }
};

int main(int argc, char* argv[]){
    // tasks = ["A","A","A","B","B","B"], n = 2
    std::vector<char> test = {'A', 'A', 'A', 'B', 'B', 'B'};
    int n = 2;
    Solution S1;
    int res = S1.leastInterval(test, n);
    std::cout << res << std::endl;
    return 0;
}

9--回文子串(647)

主要思路:

        经典思路是基于滑动窗口,另一个思路是基于动态规划;

#include <vector>
#include <string>
#include <iostream>

class Solution {
public:
    int countSubstrings(std::string s) {
        // dp[i][j] 表示区间[i, j]构成的字符串是否是回文串
        std::vector<std::vector<bool>> dp(s.length(), std::vector<bool>(s.length(), false));

        // 初始化单个字符为回文字符串
        for(int i = 0; i < s.length(); i++){
            dp[i][i] = true;
        }
        int ret = s.length(); // 初始化返回结果

        // 递推
        for(int len = 2; len <= s.length(); len++){ // 遍历区间长度
            for(int l = 0; l + len - 1 < s.length(); l++){ // 枚举左边界
                int r = l + len - 1; 
                if(s[l] != s[r]) continue;
                // s[l] == s[r]
                if(len == 2 || dp[l+1][r-1] == true){
                    dp[l][r] = true;
                    ret++;
                } 
            }
        }
        return ret;
    }
};

int main(int argc, char *argv[]){
    // s = "abc"
    std::string test= "abc";
    Solution S1;
    int res = S1.countSubstrings(test);
    std::cout << res << std::endl;
    return 0;
}

10--每日温度(739)

主要思路:

        经典单调栈,维护一个单调栈存储索引,通过索引比较温度并记录对应的天数;

#include <stack>
#include <vector>
#include <iostream>

class Solution {
public:
    std::vector<int> dailyTemperatures(std::vector<int>& temperatures) {
        std::stack<int> stk; // 存储索引
        std::vector<int> res(temperatures.size(), 0);
        for(int i = 0; i < temperatures.size(); i++){
            while(!stk.empty() && temperatures[i] > temperatures[stk.top()]){ // 通过索引比较温度
                res[stk.top()] = i - stk.top();
                stk.pop();
            }
            stk.push(i);
        }
        return res;
    }
};

int main(int argc, char *argv[]){
    // temperatures = [73, 74, 75, 71, 69, 72, 76, 73]
    std::vector<int> test = {73, 74, 75, 71, 69, 72, 76, 73};
    Solution S1;
    std::vector<int> res = S1.dailyTemperatures(test);
    for(int num : res) std::cout << num << " ";
    std::cout << std::endl;
    return 0;
}

Leetcode Hot 100 end in 2023.11.04 !!!

猜你喜欢

转载自blog.csdn.net/weixin_43863869/article/details/134141508
今日推荐