智能优化算法定性分析:收敛行为分析(Analysis of the convergence behavior )

目录

一、智能优化算法改进收敛行为分析运行结果

二、收敛性分析 

三、GWO1在F1收敛性运行结果

四、改进灰狼算法GWO1 

五、代码获取 


一、智能优化算法改进收敛行为分析运行结果

607db4544dd14eda9317b269b206a0f4.png

本文以改进的灰狼算法 GWO1 为例,在 CEC2005 测试函数上进行定性分析实验。

F1:

7dcf415028004aaa9260e41175554f08.png

F5:

c13d015de86a49678e8dfc9768bb1a47.png

 F12:

67f2629442dd44dcaac74afda76cc3fa.png

二、收敛性分析 

       为了证明改进的灰狼算法GWO1的收敛性,我们给出了上图所示的收敛行为,在第一列中,显示基准函数的二维形状。第二列显示了搜索代理的最终位置,红点表示最优解的位置。从图中可以看出,搜索代理分布在整个参数空间中,但它们的位置主要在最优解附近。这表明GWO1具有出色的勘探开发性能。此外,第三列表示整个迭代过程中平均适应度值的变化。曲线收敛非常快表明了GWO1收敛速度很快。第四列说明了搜索代理在第一个维度中的轨迹。可以观察到,在早期的迭代过程中存在明显的波动,但是当迭代达到200次时,波动趋于平稳。这表明GWO1在避免局部最优和实现全局最优方面具有良好的性能。最后一列是收敛曲线,对于单峰函数,收敛曲线显得比较平滑,说明可以通过迭代得到最优值。然而,对于具有多个局部最优的多模态函数,需要在搜索过程中不断地逃避局部最优,以达到全局最优。结果表明,收敛曲线呈阶梯状。总体而言,基于这四个评价指标,GWO1明显具有收敛性。

三、GWO1在F1收敛性运行结果

5963f122c0624fbdafe7e2a845d07fbd.png

e795398fee82484e961c853b8bb0c69e.png

814994d5aa24468ea8279c71bcf04812.png

d4da5fa430004df7927530605d2f7869.png

四、改进灰狼算法GWO1 

function [Alpha_score,Alpha_pos,Convergence_curve]=GWO1(SearchAgents_no,Max_iter,lb,ub,dim,fobj)

% initialize alpha, beta, and delta_pos
Alpha_pos=zeros(1,dim);
Alpha_score=inf; %change this to -inf for maximization problems

Beta_pos=zeros(1,dim);
Beta_score=inf; %change this to -inf for maximization problems

Delta_pos=zeros(1,dim);
Delta_score=inf; %change this to -inf for maximization problems

%Initialize the positions of search agents
Positions=initialization(SearchAgents_no,dim,ub,lb);

Convergence_curve=zeros(1,Max_iter);

l=0;% Loop counter

% Main loop
while l<Max_iter
    for i=1:size(Positions,1)  
        
       % Return back the search agents that go beyond the boundaries of the search space
        Flag4ub=Positions(i,:)>ub;
        Flag4lb=Positions(i,:)<lb;
        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;               
        
        % Calculate objective function for each search agent
        fitness=fobj(Positions(i,:));
        
        % Update Alpha, Beta, and Delta
        if fitness<Alpha_score 
            Alpha_score=fitness; % Update alpha
            Alpha_pos=Positions(i,:);
        end
        
        if fitness>Alpha_score && fitness<Beta_score 
            Beta_score=fitness; % Update beta
            Beta_pos=Positions(i,:);
        end
        
        if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score 
            Delta_score=fitness; % Update delta
            Delta_pos=Positions(i,:);
        end
    end
    
    
    a=sin(((l*pi)/Max_iter)+pi/2)+1; % a decreases linearly fron 2 to 0
    
    % Update the Position of search agents including omegas
    for i=1:size(Positions,1)
        for j=1:size(Positions,2)     
                       
            r1=rand(); % r1 is a random number in [0,1]
            r2=rand(); % r2 is a random number in [0,1]
            
            A1=2*a*r1-a; % Equation (3.3)
            C1=2*r2; % Equation (3.4)
            
            D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1
            X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1
                       
            r1=rand();
            r2=rand();
            
            A2=2*a*r1-a; % Equation (3.3)
            C2=2*r2; % Equation (3.4)
            
            D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2
            X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2       
            
            r1=rand();
            r2=rand(); 
            
            A3=2*a*r1-a; % Equation (3.3)
            C3=2*r2; % Equation (3.4)
            
            D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3
            X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3             
            
            Positions(i,j)=(5*X1+3*X2+2*X3)/10;% Equation (3.7)
            
        end
    end    
    Convergence_curve(l)=Alpha_score;
end

%%
function Positions=initialization(SearchAgents_no,dim,ub,lb)

Boundary_no= size(ub,2); % numnber of boundaries

% If the boundaries of all variables are equal and user enter a signle
% number for both ub and lb
if Boundary_no==1
    Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;
end

% If each variable has a different lb and ub
if Boundary_no>1
    for i=1:dim
        ub_i=ub(i);
        lb_i=lb(i);
        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;
    end
end

五、代码获取 

需要代码请私信博主

904a8a20e7d74283b817e682862c4623.png

猜你喜欢

转载自blog.csdn.net/qq_45823589/article/details/132073062