C++17完整导引-模板特性之占位符类型模板参数


自从 C++17起,你可以使用占位符类型( autodecltype(auto))作为 非类型模板参数的类型。这意味着我们可以写出泛型代码来处理不同类型的非类型模板参数。

使用auto模板参数

自从C++17起,你可以使用auto来声明非类型模板参数。例如:

#include <iostream>
using namespace std;

template<auto N> struct S {
    
    
    S(){
    
    cout <<" S Constructor " << N <<endl;}
};

这允许我们为不同类型实例化非类型模板参数N

int main() {
    
    
   S<42> s1; // OK:S中N的类型是int
   S<'A'> s2;// OK:S中N的类型是char
}

运行结果如下:

 S Constructor 42
 S Constructor A

预处理代码如下:

#include <iostream>
using namespace std;

template<auto N>
struct S
{
    
    
  inline S()
  {
    
    
    operator<<(operator<<(std::operator<<(std::cout, " S Constructor "), N), endl);
  }
  
};

/* First instantiated from: insights.cpp:10 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
struct S<42>
{
    
    
  inline S()
  {
    
    
    std::operator<<(std::cout, " S Constructor ").operator<<(42).operator<<(std::endl);
  }
  
};

#endif
/* First instantiated from: insights.cpp:11 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
struct S<'A'>
{
    
    
  inline S()
  {
    
    
    std::operator<<(std::operator<<(std::cout, " S Constructor "), 'A').operator<<(std::endl);
  }
  
};
#endif
int main()
{
    
    
  S<42> s1 = S<42>();
  S<'A'> s2 = S<'A'>();
  return 0;
}

然而,你不能使用这个特性来实例化一些不允许作为模板参数的类型:

S<2.5> s3;  // ERROR:模板参数的类型不能是double

我们甚至还可以用指明类型的版本作为部分特化版

template<int N> class S<N> {
    
    };

示例代码如下:

#include <iostream>
using namespace std;

template <auto N>
struct S {
    
    
    S() {
    
     cout << " S Constructor " << N << endl; }
};
template<long N> struct S<N> {
    
    
    S() {
    
     cout << " S Constructor special " << N << endl; }
};
int main() {
    
    
    S<42> s1;
    S<'A'> s2;
    S<42l> s3;
}

甚至还支持类模板参数推导。例如:

template<typename T, auto N>
class A {
    
    
public:
    A(const std::array<T, N>&) {
    
    
    }
    A(T(&)[N]) {
    
    
    }
    ...
};

这个类可以推导出T的类型、N的类型、N的值:

A a2{
    
    "hello"};  // OK,推导为A<const char, 6>,N的类型是std::size_t

std::array<double, 10> sa1;
A a1{
    
    sa1};      // OK,推导为A<double, 10>,N的类型是std::size_t

预处理代码如下:

#include <array>
#include <iostream>
using namespace std;

template<typename T, auto N>
class A
{
    
    
  public: 
  inline A(const std::array<T, N> &)
  {
    
    
  }
  inline A(T (&)[N])
  {
    
    
  }
  
};

/* First instantiated from: insights.cpp:13 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
class A<const char, 6>
{
    
    
  public: 
  inline A(const std::array<const char, 6> &);
  
  inline A(const char (&)[6])
  {
    
    
  } 
};
#endif
/* First instantiated from: insights.cpp:15 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
class A<double, 10>
{
    
    
  public: 
  inline A(const std::array<double, 10> &)
  {
    
    
  }
  inline A(double (&)[10]);
  
};
#endif

/* First instantiated from: insights.cpp:15 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
A(const std::array<double, 10> &) -> A<double, 10>;
#endif

/* First instantiated from: insights.cpp:13 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
A(const char (&)[6]) -> A<const char, 6>;
#endif

int main()
{
    
    
  A<const char, 6> a2 = A<const char, 6>{
    
    "hello"};
  std::array<double, 10> sa1 = std::array<double, 10>();
  A<double, 10> a1 = A<double, 10>{
    
    sa1};
  return 0;
}

你也可以修饰auto,例如,可以确保参数类型必须是个指针
非类型模板参数可以是指针,但该指针必须指向外部链接对象,此项使用的详细解释

template<const auto* P> struct S; //

另外,通过使用可变参数模板,你可以使用多个不同类型的模板参数来实例化模板

template<auto... VS> class HeteroValueList {
    
    
};

也可以用多个相同类型的参数

template<auto V1, decltype(V1)... VS> class HomoValueList {
    
    
};

完整示例如下:

#include <array>
#include <iostream>
using namespace std;

template <const auto* P>
struct S {
    
    
    S() {
    
     cout << "S = " << (P) << endl; }
};
template <auto... VS>
class HeteroValueList {
    
    
   public:
    HeteroValueList() {
    
     cout << "HeteroValueList = " << (... + VS) << endl; }
};
template <auto V1, decltype(V1)... VS>
class HomoValueList {
    
    
   public:
    HomoValueList() {
    
    
        cout << "HomoValueList V1= " << V1 << " other = " << (... + VS) << endl;
    }
};
int main() {
    
    
    static char str1[] = "Test 1";
    S<str1> x;
    HeteroValueList<1, 2, 3> vals1;       // OK
    HeteroValueList<1, 'a', true> vals2;  // OK
    HomoValueList<1, 2, 3> vals3;         // OK
    HomoValueList<1, 'a', 3> vals4;       // OK
}

运行结果如下:

S = Test 1
HeteroValueList = 6
HeteroValueList = 99
HomoValueList V1= 1 other = 5
HomoValueList V1= 1 other = 100

预编译代码如下:

#include <array>
#include <iostream>
using namespace std;

template<const auto * P>
struct S
{
    
    
  inline S()
  {
    
    
    operator<<(operator<<(std::operator<<(std::cout, "S = "), (P)), endl);
  }
  
};

/* First instantiated from: insights.cpp:26 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
struct S<&str1>
{
    
    
  inline S()
  {
    
    
    std::operator<<(std::operator<<(std::cout, "S = "), (str1)).operator<<(std::endl);
  }
  
};
#endif


template<auto ...VS>
class HeteroValueList
{
    
    
  
  public: 
  inline HeteroValueList()
  {
    
    
    operator<<(operator<<(std::operator<<(std::cout, "HeteroValueList = "), (... + VS)), endl);
  }
};

/* First instantiated from: insights.cpp:27 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
class HeteroValueList<1, 2, 3>
{
    
    
  
  public: 
  inline HeteroValueList()
  {
    
    
    std::operator<<(std::cout, "HeteroValueList = ").operator<<((1 + 2) + 3).operator<<(std::endl);
  } 
};

#endif
/* First instantiated from: insights.cpp:28 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
class HeteroValueList<1, 'a', true>
{
    
    
  
  public: 
  inline HeteroValueList()
  {
    
    
    std::operator<<(std::cout, "HeteroValueList = ").operator<<((1 + static_cast<int>('a')) + static_cast<int>(true)).operator<<(std::endl);
  }
  
};
#endif


template<auto V1, decltype(V1) ...VS>
class HomoValueList
{
    
    
  
  public: 
  inline HomoValueList()
  {
    
    
    operator<<(operator<<(operator<<(operator<<(std::operator<<(std::cout, "HomoValueList V1= "), V1), " other = "), (... + VS)), endl);
  }
  
};

/* First instantiated from: insights.cpp:29 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
class HomoValueList<1, 2, 3>
{
    
    
  
  public: 
  inline HomoValueList()
  {
    
    
    std::operator<<(std::operator<<(std::cout, "HomoValueList V1= ").operator<<(1), " other = ").operator<<(2 + 3).operator<<(std::endl);
  }
  
};
#endif
/* First instantiated from: insights.cpp:30 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
class HomoValueList<1, 97, 3>
{
    
    
  
  public: 
  inline HomoValueList()
  {
    
    
    std::operator<<(std::operator<<(std::cout, "HomoValueList V1= ").operator<<(1), " other = ").operator<<(97 + 3).operator<<(std::endl);
  }
  
};
#endif

int main()
{
    
    
  static char str1[7] = "Test 1";
  S<&str1> x = S<&str1>();
  HeteroValueList<1, 2, 3> vals1 = HeteroValueList<1, 2, 3>();
  HeteroValueList<1, 'a', true> vals2 = HeteroValueList<1, 'a', true>();
  HomoValueList<1, 2, 3> vals3 = HomoValueList<1, 2, 3>();
  HomoValueList<1, 97, 3> vals4 = HomoValueList<1, 97, 3>();
  return 0;
}

字符和字符串模板参数

可以定义一个既可能是字符也可能是字符串的模板参数。例如,我们可以像下面这样改进用折叠表达式输出任意数量参数的方法:

#include <iostream>

template<auto Sep = ' ', typename First, typename... Args>
void print(const First& first, const Args&... args) {
    
    
    std::cout << first;
    auto outWithSep = [] (const auto& arg) {
    
    
                          std::cout << Sep << arg;
                      };
    (... , outWithSep(args));
    std::cout << '\n';
}

将默认的参数分隔符Sep设置为空格,我们可以实现和之前相同的效果:

template<auto Sep = ' ', typename First, typename... Args>
void print(const First& firstarg, const Args&... args) {
    
    
    ...
}

我们仍然可以像之前一样调用:

std::string s{
    
    "world"};
print(7.5, "hello", s);      // 打印出:7.5 hello world

然而,通过把分隔符Sep参数化,我们也可以显示指明另一个字符作为分隔符:

print<'-'>(7.5, "hello", s); // 打印出:7.5-hello-world

甚至,因为使用了auto,我们甚至可以传递被声明为无链接的字符串字面量作为分隔符:

static const char sep[] = ", ";
print<sep>(7.5, "hello", s); // 打印出:7.5, hello, world

另外,我们也可以传递任何其他可以用作模板参数的类型:

print<-11>(7.5, "hello", s); // 打印出:7.5-11hello-11world

定义元编程常量

定义编译期常量的更加容易。

原本的下列代码:

template<typename T, T v>
struct constant
{
    
    
    static constexpr T value = v;
};

using i = constant<int, 42>;
using c = constant<char, 'x'>;
using b = constant<bool, true>;

现在可以简单的实现为:

template<auto v>
struct constant
{
    
    
    static constexpr auto value = v;
};

using i = constant<42>;
using c = constant<'x'>;
using b = constant<true>;

完整示例:

#include <array>
#include <iostream>
using namespace std;
template <auto v>
struct constant {
    
    
    static constexpr auto value = v;
};
using i = constant<42>;
using c = constant<'x'>;
using b = constant<true>;
int main() {
    
    
    i jj;
  	c jj1;
  	b jj2;
}

预处理代码如下:

#include <array>
#include <iostream>
using namespace std;

template<auto v>
struct constant
{
    
    
  inline static constexpr const auto value = v;
};

/* First instantiated from: insights.cpp:14 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
struct constant<42>
{
    
    
  inline static constexpr const int value = 42;
  // inline constexpr constant() noexcept = default;
};

#endif
/* First instantiated from: insights.cpp:15 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
struct constant<'x'>
{
    
    
  inline static constexpr const char value = 'x';
  // inline constexpr constant() noexcept = default;
};

#endif
/* First instantiated from: insights.cpp:16 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
struct constant<true>
{
    
    
  inline static constexpr const bool value = true;
  // inline constexpr constant() noexcept = default;
};

#endif
using i = constant<42>;
using c = constant<'x'>;
using b = constant<true>;

int main()
{
    
    
  constant<42> jj = constant<42>();
  constant<'x'> jj1 = constant<'x'>();
  constant<true> jj2 = constant<true>();
  return 0;
}

同样,原本的下列代码:

template<typename T, T... Elements>
struct sequence {
    
    
};

using indexes = sequence<int, 0, 3, 4>;

现在可以简单的实现为:

template<auto... Elements>
struct sequence {
    
    
};

using indexes = sequence<0, 3, 4>;

预处理代码如下:

template<typename T, T ...Elements>
struct sequence
{
    
    
};

/* First instantiated from: insights.cpp:11 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
struct sequence<int, 0, 3, 4>
{
    
    
  // inline constexpr sequence() noexcept = default;
};

#endif

using indexes = sequence<int, 0, 3, 4>;

int main()
{
    
    
  sequence<int, 0, 3, 4> i = sequence<int, 0, 3, 4>();
  return 0;
}

你现在甚至可以定义一个持有若干不同类型的值的编译期对象(类似于一个简单的tuple):

using tuple = sequence<0, 'h', true>;

使用auto作为变量模板的参数

你也可以使用auto作为模板参数来实现 变量模板(variable templates)
例如,下面的声明定义了一个变量模板arr,它的模板参数分别是元素的类型和数量:

template<typename T, auto N> std::array<T, N> arr;

在每个编译单元中,所有对arr<int, 10>的引用将指向同一个全局对象。而arr<long, 10>arr<int, 10u>将指向其他对象(每一个都可以在所有编译单元中使用)。作为一个完整的例子,考虑如下的头文件:

#ifndef VARTMPLAUTO_HPP
#define VARTMPLAUTO_HPP

#include <array>
template<typename T, auto N> std::array<T, N> arr{
    
    };

void printArr();

#endif // VARTMPLAUTO_HPP

这里,我们可以在一个编译单元内修改两个变量模板的不同实例:

#include "vartmplauto.hpp"

int main()
{
    
    
    arr<int, 5>[0] = 17;
    arr<int, 5>[3] = 42;
    arr<int, 5u>[1] = 11;
    arr<int, 5u>[3] = 33;
    printArr();
}

另一个编译单元内可以打印这两个变量模板:

#include "vartmplauto.hpp"
#include <iostream>

void printArr()
{
    
    
    std::cout << "arr<int, 5>:  ";
    for (const auto& elem : arr<int, 5>) {
    
    
        std::cout << elem << ' ';
    }
    std::cout << "\narr<int, 5u>: ";
    for (const auto& elem : arr<int, 5u>) {
    
    
        std::cout << elem << ' ';
    }
    std::cout << '\n';
}

程序的输出将是:

arr<int, 5>:  17 0 0 42 0
arr<int, 5u>: 0 11 0 33 0

用同样的方式你可以声明一个任意类型的常量变量模板,类型可以通过初始值推导出来:

template<auto N> constexpr auto val = N; // 自从C++17起OK

之后可以像下面这样使用:

auto v1 = val<5>;       // v1 == 5,v1的类型为int
auto v2 = val<true>;    // v2 == true,v2的类型为bool
auto v3 = val<'a'>;     // v3 == 'a',v3的类型为char

这里解释了发生了什么:

std::is_same_v<decltype(val<5>), int>       // 返回false
std::is_same_v<decltype(val<5>), const int> // 返回true
std::is_same_v<decltype(v1), int>           // 返回true(因为auto会退化)

使用decltype(auto)模板参数

你现在也可以使用另一个占位类型decltype(auto)C++14引入)作为模板参数。注意,这个占位类型的推导有非常特殊的规则。根decltype的规则,如果使用decltype(auto)来推导 表达式(expressions) 而不是变量名,那么推导的结果将依赖于表达式的值类型:

  • prvalue(例如临时变量)推导出 type
  • lvalue(例如有名字的对象)推导出 type&
  • xvalue(例如用std::move()标记的对象)推导出 type&&
    这意味着你很容易就会把模板参数推导为引用,这可能导致一些令人惊奇的效果。
    例如:
#include <iostream>

template<decltype(auto) N>
struct S {
    
    
    void printN() const {
    
    
        std::cout << "N: " << N << '\n';
    }
};

static const int c = 42;
static int v = 42;

int main()
{
    
    
    S<c> s1;        // N的类型推导为const int 42
    S<(c)> s2;      // N的类型推导为const int&,N是c的引用
    s1.printN();
    s2.printN();

    S<(v)> s3;      // N的类型推导为int&,N是v的引用
    v = 77;
    s3.printN();    // 打印出:N: 77
}

运行结果如下;

N: 42
N: 42
N: 77

预处理代码如下:

#include <iostream>

template<decltype(auto) N>
struct S
{
    
    
  inline void printN() const
  {
    
    
    (std::operator<<(std::cout, "N: ") << N) << '\n';
  }
  
};

/* First instantiated from: insights.cpp:15 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
struct S<42>
{
    
    
  inline void printN() const
  {
    
    
    std::operator<<(std::operator<<(std::cout, "N: ").operator<<(42), '\n');
  }
  
  // inline constexpr S() noexcept = default;
};

#endif
/* First instantiated from: insights.cpp:16 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
struct S<&c>
{
    
    
  inline void printN() const
  {
    
    
    std::operator<<(std::operator<<(std::cout, "N: ").operator<<(c), '\n');
  }
  
  // inline constexpr S() noexcept = default;
};

#endif
/* First instantiated from: insights.cpp:20 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
struct S<&v>
{
    
    
  inline void printN() const
  {
    
    
    std::operator<<(std::operator<<(std::cout, "N: ").operator<<(v), '\n');
  }
  
  // inline constexpr S() noexcept = default;
};

#endif


static const int c = 42;

static int v = 42;

int main()
{
    
    
  S<42> s1 = S<42>();
  S<&c> s2 = S<&c>();
  s1.printN();
  s2.printN();
  S<&v> s3 = S<&v>();
  v = 77;
  s3.printN();
  return 0;
}

猜你喜欢

转载自blog.csdn.net/MMTS_yang/article/details/130773007