OBD开发文档

表一  OBD 统输出信息的模式/服务

模式

服务

Mode 1

请求动力系统当前数据

Mode 2

请求冻结祯数据

Mode 3

请求排放相关的动力系统诊断故障码

Mode 4

清除/位排放相关的诊断信息

Mode 5

请求氧传感器监测测试结果

Mode 6

请求非连续监测系统 OBD 测试结

Mode 7

请求连续监测系统 OBD 试结果

Mode 8

请求控制车载系统,测试或者部件

Mode 9

读车辆和标定识别号

2 返回数据字节

A

B

C

D

A7A6A5A4A3A2A1A0

B7B6B5B4B3B2B1B0

C7C6C5C4C3C2C1C0

D7D6D5D4D3D2D1D0

3 模式一相关

PID

返回

描述

最小值

最大值

单位

公式

字节

六进

00

4

PID 支持01-20

01

4

02

2

冻结 DTC

03

2

燃料系统状态

04

1

计算引擎负载值

0

100

%

A*100/255

05

1

发动机冷却液温度

-40

215

°C

A-40

06

1

短时燃油修正(缸列 1

-100

99.22

%

(A - 128)* 100/128

3)

去燃料

添加燃

(丰富的

(

条件)

益条

)

07

1

长期燃油修正(缸列 1

-100

99.22

%

(A - 128)* 100/128

3)

去燃料

添加燃

(丰富的

(

条件)

益条

)

08

1

短时燃油修正(缸列 2

-100

99.22

%

(A - 128)* 100/128

4)

去燃料

添加燃

(丰富的

(

条件)

益条

)


09

1

长期燃油修正(缸列 2

-100

99.22

%

(A - 128)* 100/128

4)

去燃料

添加燃

(丰富的

(

条件)

益条

)

0A

1

燃油压

0

765(

)

kPa

A*3

0B

1

进气歧管绝对压力

0

255

(绝 对)

kPa

A

0C

2

发动机转速

0

16383

.75

rpm

((A* 256)+ B)/ 4

0D

1

车辆速度

0

255

KM/

H

A

0E

1

第一缸点火正时提前角

-40

63.5

°(

(A – 128)/ 2

(不包括机械提前)

对于

汽缸

1)

0F

1

进气温度

-40

215

°C

A-40

10

2

空气流量传感器的空气

0

655.3

g/s

((A* 256)+ B)/ 100

流量

5

11

1

绝对节气门位置

0

100

%

A* 100/255

12

1

二次空气状态指令

13

1

氧传感器位置

[A0A3)= =  1,

传感1 - 4[A4A7)= =

2…

14

1B

-

2

传统 0 1V 氧传感器

输出电(Bx-Sy)及与此 传感器关联的短时燃油 修正(Bx-Sy)

0

-100

1.275

99.2

V

%

A/200

(B - 128)*100/128

(如果 B 感器

用于修正计算)

1C

1

OBD 系统的车辆设计要

1D

1

氧传感器的位置

类似PID 13

[A0 …A7]==[B1S 1B1S2

B2S1,B2S2,B3S1

,B3S2,B4S1,B4S 2]

1E

1

辅助输入状态

A0==力输出

状态 1==活跃


未用 A1-A7

1F

2

自发动机起动的时间

0

65535

s

(A* 256)+ B

20

4

pid 支持(21 - 40)

21

2

MIL 活状态下行驶

的里程

0

65535

KM

(A* 256)+ B

22

2

相对于歧管真空度的油

0

5177.

kPa

((A* 256)+ B)*

轨压力

265

0.079

23

2

相对于大气压力的油轨

0

65535

kPa(j

((A* 256)+ B)* 10

压力

0

)

24

4

O2S1_WR_lambda(1):

0

1.999

N/A

((A*256)+B)*2/65

线性或宽带式氧传感器

535 or

的等效(lambda)和电

0

7.999

V

((A*256)+B)/3276

8

((C*256)+D)*8/65

535 or

((C*256)+D)/8192

25

4

O2S2_WR_lambda(1):

0

2

N/A

((A*256)+B)*2/65

线性或宽带式氧传感器

535

的等效(lambda)和电

0

8

V

((C*256)+D)*8/65

535

26

4

O2S3_WR_lambda(1):

0

2

N/A

((A*256)+B)*2/65

线性或宽带式氧传感器

535

的等效(lambda)和电

0

8

V

((C*256)+D)*8/65

535

27

4

O2S4_WR_lambda(1):

0

2

N/A

((A*256)+B)*2/65

线性或宽带式氧传感器

535

的等效(lambda)和电

0

8

V

((C*256)+D)*8/65

535

28

4

O2S5_WR_lambda(1):

0

2

N/A

((A*256)+B)*2/65

线性或宽带式氧传感器

535

的等效(lambda)和电

0

8

V

((C*256)+D)*8/65

535

29

4

O2S6_WR_lambda(1):

0

2

N/A

((A*256)+B)*2/65

线性或宽带式氧传感器

535

的等效(lambda)和电

0

8

V

((C*256)+D)*8/65

535

2A

4

O2S7_WR_lambda(1):

0

2

N/A

((A*256)+B)*2/65

线性或宽带式氧传感器

535

的等效(lambda)和电

0

8

V

((C*256)+D)*8/65

535

2B

4

O2S8_WR_lambda(1):

0

2

N/A

((A*256)+B)*2/65

线性或宽带式氧传感器

535

的等效(lambda)和电

0

8

V

((C*256)+D)*8/65

535


2C

1

EGR 指令开度

0

100

%

A*100/255

2D

1

EGR 开度误差 (际开

指令开度)/指令 开度*100%

-100

99.00

%

(A-128) * 100/128

2E

1

蒸发冲洗控制指令

0

100

%

A*100/255

2F

1

燃油液位输入

0

100

%

A*100/255

30

1

自故障码被清除之后经

历的暖机循环个数

0

255

N/A

A

31

2

自故障码被清除之后的

行驶里

0

65535

Km

(A*256)+B

32

2

蒸发系统的蒸气压力

-8192

8192

Pa

((A*256)+B)/4

33

1

大气压

0

255

kPa

A

34-

4

线性或宽带式氧传感器

0

2

N/A

((A*256)+B)/32,76

3B

的等效(lambda)和电

8

-128

128

mA

((C*256)+D)/256 -

128

3C

2

催化器温度 B1S1

-40

6513.

°C

((A*256)+B)/10 -

5

40

3D

2

催化器温度 B2S1

-40

6513.

°C

((A*256)+B)/10 -

5

40

3E

2

催化器温度 B1S2

-40

6513.

°C

((A*256)+B)/10 -

5

40

3F

2

催化器温度 B2S2

-40

6513.

°C

((A*256)+B)/10 -

5

40

40

4

支持 PID[41-60]

41

4

当前驾驶循环的监测状

42

2

控制模块电压

0

65.53

5

V

((A*256)+B)/1000

43

2

绝对负荷值

0

25700

%

((A*256)+B)*100/

255

44

2

等效比指令

0

2

N/A

((A*256)+B)/3276

8

45

1

相对节气门位置

0

100

%

A*100/255

46

1

环境空气温度

-40

215

°C

A-40

47

1

绝对节气门位置 B

0

100

%

A*100/255

48

1

绝对节气门位置 C

0

100

%

A*100/255

49

1

加速踏板位置 D

0

100

%

A*100/255

4A

1

加速踏板位置 E

0

100

%

A*100/255

4B

1

加速踏板位置 F

0

100

%

A*100/255

4C

1

节气门执行器控制指令

0

100

%

A*100/255

4D

2

MIL 处于激活状态下的

发动机运转时间

0

65535

Minu

ties

(A*256)+B


4E

2

自故障码清除之后的时

0

65535

Minu

ties

(A*256)+B

4F

4

等效比的最大值及对应

0,

255,

V

A,

的氧传感器电压

0,

255,

B,

0,

255,

mA

C,

0

2550

kPa

D*10

50

4

来自空气流量传感器的

最大流

0

2550

g/s

A*10,;B, C,D

预留使

51

1

当前车辆使用的燃料类

见燃料

52

1

酒精在燃料的百分比

0

100

%

A*100/255

53

2

蒸发系统蒸气压力

0

327.6

kPa

((A*256)+B)/200

75

54

2

蒸发系统蒸气压力

-32767

32768

Pa

((A*256)+B)-

32767

55

2

第二个氧传感器的短时

燃油修(Bank 1

Bank 3)

-100

99.22

%

(A-128)*100/128 (B-128)*100/128

56

2

第二个氧传感器的短时

燃油修(Bank 1

Bank 3)

-100

99.22

%

(A-128)*100/128 (B-128)*100/128

57

2

第二个氧传感器的短时

燃油修(Bank 2

Bank 4)

-100

99.22

%

(A-128)*100/128 (B-128)*100/128

58

2

第二个氧传感器的短时

燃油修(Bank 2

Bank 4)

-100

99.22

%

(A-128)*100/128 (B-128)*100/128

59

2

油轨绝对压力

0

65535

0

kPa

((A*256)+B) * 10

5A

1

相对加速踏板位置

0

100

%

A*100/255

5B

1

混合动力电池组剩余的

生命

0

100

%

A*100/255

5C

1

机油温

-40

210

°C

A-40

5D

2

燃油喷射定时

-210.00

301.9

°

(((A* 256)+ B)-

92

26880)/ 128

5E

2

发动机燃料消耗率

0

3212.

L/h

((A* 256)+ B)*

75

0.05

5F

1

排放车辆设计需求


表4 模式 2 相关

PID

十 六进 制

返回

字节 数

描述

最小值

最大值

单位

公式

02

2

DTC 导致冻结帧被存储

BDC 编码

表5 模式 3 相关

PID

十 六进 制

返回

字节 数

描述

最小值

最大值

单位

公式

N/A

N*6

请求故障代码

每个消息帧三个

表6 模式 4 相关

PID

十 六进 制

返回

字节 数

描述

最小值

最大值

单位

公式

N/A

2

清除故障代码/障指

(MIL)/检查引擎灯

清除所有存储

代码。

Lastedited 29 days ago by Nyq

OBD-II PIDs

Watch this page

OBD-II PIDs (On-board diagnostics Parameter IDs) are codes used to requestdata from a vehicle, usedasa diagnostic tool.

SAE standardJ/1979 defines many PIDs,but manufacturers alsodefine many morePIDsspecific to theirvehicles. All light duty vehicles(i.e. less than 8,500 pounds) sold in North America since 1996,as well asmedium duty vehicles (i.e. 8,500-14,000pounds) beginning in 2005,and heavy duty vehicles(i.e. greater than14,000 pounds) beginning in2010,[citation neededare requiredto support OBD-II diagnostics,using a standardizeddata link connector, and a subset of the SAE J/1979 definedPIDs (or SAE J/1939 as applicable for medium/heavy duty vehicles), primarily for statemandatedemissions inspections.

Typically, anautomotive technician will use PIDs with a scan tool connected to the vehicle's OBD-II connector.

§  The technician entersthe PID


§  The scan tool sends it to the vehicle's controllerareanetwork(CAN)-bus,VPW, PWM, ISO, KWP. (After 2008, CANonly)

§  A device onthe bus recognizesthe PIDas one it is responsiblefor, and reportsthe value for that PIDto the bus

§  The scantool reads the response,and displays it to the technician

Contents

·      Modes

·      StandardPIDs

o     Mode 01

o     Mode 02

o     Mode 03

o     Mode 04

o     Mode 05

o     Mode 09

o     Bitwise encoded PIDs

§  Mode 1 PID 00

§  Mode 1 PID 01

§  Mode 1 PID 41

§  Mode 1 PID 78

§  Mode 3(no PID required)

§  Mode 9 PID 08

§  Mode 9 PID 0B

o     Enumerated PIDs

§  Mode 1 PID 03

§  Mode 1 PID 12

§  Mode 1 PID 1C

§  Fuel Type Coding

·      Non-standard PIDs

·      CAN (11-bit) bus format

o     Query

o     Response

·      See also

·      References

·      External links

ModesEdit

There are tenmodesof operation described in thelatest OBD-II standardSAEJ1979. They are asfollows:

Mode (hex)

Description

01

Show current data

02

Show freeze frame data


03

Show stored Diagnostic Trouble Codes

04

Clear Diagnostic Trouble Codes and stored values

05

Test results, oxygen sensor monitoring (non CAN only)

06

Test results, other component/system monitoring (Test results, oxygen sensor monitoring for CAN only)

07

Show pending Diagnostic Trouble Codes (detected during current or last driving cycle)

08

Control operation of on-board component/system

09

Request vehicle information

0A

Permanent Diagnostic TroubleCodes (DTCs) (Cleared DTCs)

Vehicle manufacturersarenot required to support all modes. Each manufacturer maydefine additional modes above #9 (e.g.:mode 22 as definedbySAE J2190 for Ford/GM,mode 21 for Toyota)for other informatione.g. the voltage of the tractionbattery in a hybridelectric vehicle(HEV).[1]

Standard PIDsEdit

The table belowshows the standard OBD-II PIDs asdefined by SAE J1979. The expectedresponse for eachPIDis given, along with informationon how to translate the responseinto meaningful data. Again,not all vehicles will support all PIDs andthere can be manufacturer-defined custom PIDs thatarenot defined in theOBD-II standard.

Note that modes 1 and 2 are basically identical,exceptthat Mode 1 provides current information,whereas Mode 2 providesa snapshot of the same data taken atthe point when the last diagnostic trouble code was set. The exceptionsarePID 01, which is only availablein Mode 1, and PID02, which is only availablein Mode 2. If Mode 2PID02 returns zero, then there is no snapshotandall other Mode 2data is meaningless.

When usingBit-Encoded-Notation,quantities like C4 means bit 4 from data byteC. Each bit is numerated from0 to 7, so 7 is the most significantbit and 0 is the leastsignificant bit.

A

B

C

D

A 7

A 6

A 5

A 4

A 3

A 2

A 1

A 0

B 7

B 6

B 5

B 4

B 3

B 2

B 1

B 0

C 7

C 6

C 5

C 4

C 3

C 2

C 1

C 0

D 7

D 6

D 5

D 4

D 3

D 2

D 1

D 0

Mode 01

PID

(hex

)

Data bytes

Description

Min value

Max value

Units

Formula[a]


return ed

00

4

PIDs supported [01

- 20]

Bit encoded [A7..D0] == [PID

$01..PID $20] See below

01

4

Monitor status since DTCs cleared. (Includes malfunction indicator lamp (MIL) status and number of DTCs.)

Bit encoded. See  below

02

2

Freeze DTC

03

2

Fuel system status

Bit encoded. See  below

04

1

Calculated engine load value

0

100

%

A*100/255

05

1

Engine coolant temperature

-40

215

°C

A-40

06

1

Short term fuel % trim—Bank 1

-100

Subtracti ng Fuel (Rich Conditio n)

99.22

Adding Fuel (Lean Conditio n)

%

(A-128) * 100/128

07

1

Long term fuel % trim—Bank 1

-100

Subtracti ng Fuel (Rich Conditio n)

99.22

Adding Fuel (Lean Conditio n)

%

(A-128) * 100/128

08

1

Short term fuel % trim—Bank 2

-100

Subtracti ng Fuel (Rich Conditio n)

99.22

Adding Fuel (Lean Conditio n)

%

(A-128) * 100/128

09

1

Long term fuel % trim—Bank 2

-100

Subtracti

99.22

Adding

%

(A-128) * 100/128


ng Fuel (Rich Conditio n)

Fuel (Lean Conditio n)

0A

1

Fuel pressure

0

765

kPa (gauge)

A*3

0B

1

Intake manifold absolute pressure

0

255

kPa (absolut e)

A

0C

2

Engine RPM

0

16,383.7

5

rpm

((A*256)+B)/4

0D

1

Vehicle speed

0

255

km/h

A

0E

1

Timing advance

-64

63.5

°

relative to #1 cylinder

(A-128)/2

0F

1

Intake air temperature

-40

215

°C

A-40

10

2

MAF air flow rate

0

655.35

grams/se c

((A*256)+B) / 100

11

1

Throttle position

0

100

%

A*100/255

12

1

Commanded secondary air status

Bit encoded. See  below

13

1

Oxygen sensors present

[A0..A3] == Bank

1, Sensors 1-4. [A4..A7] == Bank 2...

14

2

Bank 1, Sensor 1:

0

1.275

Volts

A/200

Oxygen sensor

(B-128) * 100/128

voltage,

(if B==$FF, sensor

Short term fuel

-

99.2(rich

is not used in trim

trim

100(lean)

)

%

calc)

15

2

Bank 1, Sensor 2:

0

1.275

Volts

A/200

Oxygen sensor

(B-128) * 100/128

voltage,

(if B==$FF, sensor

Short term fuel

-

99.2(rich

is not used in trim

trim

100(lean)

)

%

calc)

16

2

Bank 1, Sensor 3: Oxygen sensor

0

1.275

Volts

%

A/200

(B-128) * 100/128


voltage,

Short term fuel trim

-

100(lean)

99.2(rich

)

(if B==$FF, sensor is not used in trim calc)

17

2

Bank 1, Sensor 4:

0

1.275

Volts

A/200

Oxygen sensor

(B-128) * 100/128

voltage,

(if B==$FF, sensor

Short term fuel

-

99.2(rich

is not used in trim

trim

100(lean)

)

%

calc)

18

2

Bank 2, Sensor 1:

0

1.275

Volts

A/200

Oxygen sensor

(B-128) * 100/128

voltage,

(if B==$FF, sensor

Short term fuel

-

99.2(rich

is not used in trim

trim

100(lean)

)

%

calc)

19

2

Bank 2, Sensor 2:

0

1.275

Volts

A/200

Oxygen sensor

(B-128) * 100/128

voltage,

(if B==$FF, sensor

Short term fuel

-

99.2(rich

is not used in trim

trim

100(lean)

)

%

calc)

1A

2

Bank 2, Sensor 3:

0

1.275

Volts

A/200

Oxygen sensor

(B-128) * 100/128

voltage,

(if B==$FF, sensor

Short term fuel

-

99.2(rich

is not used in trim

trim

100(lean)

)

%

calc)

1B

2

Bank 2, Sensor 4:

0

1.275

Volts

A/200

Oxygen sensor

(B-128) * 100/128

voltage,

(if B==$FF, sensor

Short term fuel

-

99.2(rich

is not used in trim

trim

100(lean)

)

%

calc)

1C

1

OBD standards this vehicle conforms to

Bit encoded. See  below

1D

1

Oxygen sensors present

Similar to PID 13, but [A0..A7] == [B1S1, B1S2, B2S1, B2S2, B3S1, B3S2, B4S1, B4S2]

1E

1

Auxiliary input status

A0 == Power Take Off (PTO) status (1 == active) [A1..A7] not used


1F

2

Run time since engine start

0

65,535

seconds

(A*256)+B

20

4

PIDs supported [21

- 40]

Bit encoded [A7..D0] == [PID

$21..PID $40] See below

21

2

Distance traveled with malfunction indicator lamp (MIL) on

0

65,535

km

(A*256)+B

22

2

Fuel Rail Pressure

0

5177.26

kPa

((A*256)+B) *

(relative to

manifold vacuum)

5

0.079

23

2

Fuel Rail Pressure (diesel, or gasoline direct inject)

0

655,350

kPa (gauge)

((A*256)+B) * 10

24

4

O2S1_WR_lambda

0

1.999

N/A

((A*256)+B)*2/65

535 or

((A*256)+B)/3276

8

(1):

((C*256)+D)*8/65

Equivalence Ratio

535 or

Voltage

0

7.999

V

((C*256)+D)/8192

25

4

O2S2_WR_lambda

0

2

N/A

((A*256)+B)*2/65

(1):

535

Equivalence Ratio

((C*256)+D)*8/65

Voltage

0

8

V

535

26

4

O2S3_WR_lambda

0

2

N/A

((A*256)+B)*2/65

(1):

535

Equivalence Ratio

((C*256)+D)*8/65

Voltage

0

8

V

535

27

4

O2S4_WR_lambda

0

2

N/A

((A*256)+B)*2/65

(1):

535

Equivalence Ratio

((C*256)+D)*8/65

Voltage

0

8

V

535

28

4

O2S5_WR_lambda

0

2

N/A

((A*256)+B)*2/65

(1):

535

Equivalence Ratio

((C*256)+D)*8/65

Voltage

0

8

V

535


29

4

O2S6_WR_lambda

0

2

N/A

((A*256)+B)*2/65

(1):

535

Equivalence Ratio

((C*256)+D)*8/65

Voltage

0

8

V

535

2A

4

O2S7_WR_lambda

0

2

N/A

((A*256)+B)*2/65

(1):

535

Equivalence Ratio

((C*256)+D)*8/65

Voltage

0

8

V

535

2B

4

O2S8_WR_lambda

0

2

N/A

((A*256)+B)*2/65

(1):

535

Equivalence Ratio

((C*256)+D)*8/65

Voltage

0

8

V

535

2C

1

Commanded EGR

0

100

%

A*100/255

2D

1

EGR Error

-100

99.22

%

(A-128) * 100/128

2E

1

Commanded evaporative purge

0

100

%

A*100/255

2F

1

Fuel Level Input

0

100

%

A*100/255

30

1

# of warm-ups since codes cleared

0

255

N/A

A

31

2

Distance traveled since codes cleared

0

65,535

km

(A*256)+B

32

2

Evap. System Vapor Pressure

-8,192

8,192

Pa

((A*256)+B)/4 (A

and B are two's complementsigned

)

33

1

Barometric pressure

0

255

kPa (Absolut e)

A

34

4

O2S1_WR_lambda

0

1.999

N/A

((A*256)+B)/32,7

(1):

68

Equivalence Ratio

((C*256)+D)/256 -

Current

-128

127.99

mA

128

35

4

O2S2_WR_lambda

0

2

N/A

((A*256)+B)/32,7

(1):

68

Equivalence Ratio

((C*256)+D)/256 -

Current

-128

128

mA

128

36

4

O2S3_WR_lambda

0

2

N/A

((A*256)+B)/3276

(1):

-128

128

mA

8


Equivalence Ratio

((C*256)+D)/256 -

Current

128

37

4

O2S4_WR_lambda

0

2

N/A

((A*256)+B)/32,7

(1):

68

Equivalence Ratio

((C*256)+D)/256 -

Current

-128

128

mA

128

38

4

O2S5_WR_lambda

0

2

N/A

((A*256)+B)/32,7

(1):

68

Equivalence Ratio

((C*256)+D)/256 -

Current

-128

128

mA

128

39

4

O2S6_WR_lambda

0

2

N/A

((A*256)+B)/32,7

(1):

68

Equivalence Ratio

((C*256)+D)/256 -

Current

-128

128

mA

128

3A

4

O2S7_WR_lambda

0

2

N/A

((A*256)+B)/32,7

(1):

68

Equivalence Ratio

((C*256)+D)/256 -

Current

-128

128

mA

128

3B

4

O2S8_WR_lambda

0

2

N/A

((A*256)+B)/32,7

(1):

68

Equivalence Ratio

((C*256)+D)/256 -

Current

-128

128

mA

128

3C

2

Catalyst Temperature Bank 1, Sensor 1

-40

6,513.5

°C

((A*256)+B)/10 - 40

3D

2

Catalyst Temperature Bank 2, Sensor 1

-40

6,513.5

°C

((A*256)+B)/10 - 40

3E

2

Catalyst Temperature Bank 1, Sensor 2

-40

6,513.5

°C

((A*256)+B)/10 - 40

3F

2

Catalyst Temperature Bank 2, Sensor 2

-40

6,513.5

°C

((A*256)+B)/10 - 40

40

4

PIDs supported [41

- 60]

Bit encoded [A7..D0] == [PID

$41..PID $60] See below

41

4

Monitor status this drive cycle

Bit encoded. See  below


42

2

Control module voltage

0

65.535

V

((A*256)+B)/1000

43

2

Absolute load value

0

25,700

%

((A*256)+B)*100/ 255

44

2

Command equivalence ratio

0

2

N/A

((A*256)+B)/3276 8

45

1

Relative throttle position

0

100

%

A*100/255

46

1

Ambient air temperature

-40

215

°C

A-40

47

1

Absolute throttle position B

0

100

%

A*100/255

48

1

Absolute throttle position C

0

100

%

A*100/255

49

1

Accelerator pedal position D

0

100

%

A*100/255

4A

1

Accelerator pedal position E

0

100

%

A*100/255

4B

1

Accelerator pedal position F

0

100

%

A*100/255

4C

1

Commanded throttle actuator

0

100

%

A*100/255

4D

2

Time run with MIL on

0

65,535

minutes

(A*256)+B

4E

2

Time since trouble codes cleared

0

65,535

minutes

(A*256)+B

4F

4

Maximum value for equivalence ratio, oxygen sensor voltage, oxygen sensor current, and intake manifold absolute pressure

0, 0, 0, 0

255,

255,

255,

2550

, V, mA,

kPa

A, B, C, D*10

50

4

Maximum value for air flow rate from mass air flow sensor

0

2550

g/s

A*10, B, C, and D are reserved for future use


51

1

Fuel Type

From fuel type table seebelow

52

1

Ethanol fuel %

0

100

%

A*100/255

53

2

Absolute Evap system Vapor Pressure

0

327.675

kPa

((A*256)+B)/200

54

2

Evap system vapor pressure

-32,767

32,768

Pa

((A*256)+B)- 32767

55

2

Short term secondary oxygen sensor trim bank 1 and bank 3

-100

99.22

%

(A-128)*100/128 (B-128)*100/128

56

2

Long term secondary oxygen sensor trim bank 1 and bank 3

-100

99.22

%

(A-128)*100/128 (B-128)*100/128

57

2

Short term secondary oxygen sensor trim bank 2 and bank 4

-100

99.22

%

(A-128)*100/128 (B-128)*100/128

58

2

Long term secondary oxygen sensor trim bank 2 and bank 4

-100

99.22

%

(A-128)*100/128 (B-128)*100/128

59

2

Fuel rail pressure (absolute)

0

655,350

kPa

((A*256)+B) * 10

5A

1

Relative accelerator pedal position

0

100

%

A*100/255

5B

1

Hybrid battery pack remaining life

0

100

%

A*100/255

5C

1

Engine oil temperature

-40

210

°C

A - 40

5D

2

Fuel injection timing

-210.00

301.992

°

(((A*256)+B)- 26,880)/128

5E

2

Engine fuel rate

0

3212.75

L/h

((A*256)+B)*0.05

5F

1

Emission requirements to

Bit Encoded


which vehicle is designed

60

4

PIDs supported [61

- 80]

Bit encoded [A7..D0] == [PID

$61..PID $80] See below

61

1

Driver's demand engine - percent torque

-125

125

%

A-125

62

1

Actual engine - percent torque

-125

125

%

A-125

63

2

Engine reference torque

0

65,535

Nm

A*256+B

64

5

Engine percent torque data

-125

125

%

A-125 Idle

B-125 Engine point 1

C-125 Engine point 2

D-125 Engine point 3

E-125 Engine point 4

65

2

Auxiliary input / output supported

Bit Encoded

66

5

Mass air flow sensor

67

3

Engine coolant temperature

68

7

Intake air temperature sensor

69

7

Commanded EGR and EGR Error

6A

5

Commanded Diesel intake air flow control and relative intake air flow position

6B

5

Exhaust gas recirculation temperature


6C

5

Commanded throttle actuator control and relative throttle position

6D

6

Fuel pressure control system

6E

5

Injection pressure control system

6F

3

Turbocharger compressor inlet pressure

70

9

Boost pressure control

71

5

Variable Geometry turbo (VGT) control

72

5

Wastegate control

73

5

Exhaust pressure

74

5

Turbocharger RPM

75

7

Turbocharger temperature

76

7

Turbocharger temperature

77

5

Charge air cooler temperature (CACT)

78

9

Exhaust Gas temperature (EGT) Bank 1

Special PID. See  below

79

9

Exhaust Gas temperature (EGT) Bank 2

Special PID. See  below

7A

7

Diesel particulate filter (DPF)

7B

7

Diesel particulate filter (DPF)


7C

9

Diesel Particulate filter (DPF) temperature

7D

1

NOx NTE control area status

7E

1

PM NTE control area status

7F

13

Engine run time

80

4

PIDs supported [81

- A0]

Bit encoded [A7..D0] == [PID

$81..PID $A0] See

below

81

21

Engine run time for Auxiliary Emissions Control Device(AECD)

82

21

Engine run time for Auxiliary Emissions Control Device(AECD)

83

5

NOx sensor

84

Manifold surface temperature

85

NOx reagent system

86

Particulate matter (PM) sensor

87

Intake manifold absolute pressure

A0

4

PIDs supported [A1 - C0]

Bit encoded [A7..D0] == [PID

$A1..PID

$C0] Seebelow

C0

4

PIDs supported [C1 - E0]

Bit encoded [A7..D0] == [PID

$C1..PID $E0] See

below

C3

?

?

?

?

?

Returns numerous data, including


Drive Condition ID and Engine Speed*

C4

?

?

?

?

?

B5 is Engine Idle Request

B6 is Engine Stop Request*

PID

(hex

)

Data bytes return ed

Description

Min value

Max value

Units

Formula[a]

Mode 02

Mode 02 accepts thesame PIDsas mode 01, with the samemeaning, but informationgiven is from whenthe freeze framewascreated.

Youhaveto send the framenumber in the data sectionof the message.

PID

(hex)

Data bytes returned

Description

Min value

Max value

Units

Formula[a]

02

2

DTC that caused freeze frame to be stored.

BCD

encoded. Decoded as  inmode3

Mode 03

PID

(hex)

Data bytes returned

Description

Min value

Max value

Units

Formula[a]

N/A

n*6

Request trouble codes

3 codes per message frame.See below

Mode 04

PID

(hex)

Data bytes returned

Description

Min value

Max value

Units

Formula[a]

N/A

0

Clear trouble codes / Malfunction indicator lamp (MIL) / Check engine light

Clears all stored trouble codes and turns the MIL off.

Mode 05

PID

(hex)

Data bytes returned

Description

Min value

Max value

Units

Formula[a]


0100

OBD Monitor IDs supported ($01 –

$20)

0101

O2 Sensor Monitor Bank 1 Sensor 1

0.00

1.275

Volts

0.005 Rich to lean sensor threshold voltage

0102

O2 Sensor Monitor Bank 1 Sensor 2

0.00

1.275

Volts

0.005 Rich to lean sensor threshold voltage

0103

O2 Sensor Monitor Bank 1 Sensor 3

0.00

1.275

Volts

0.005 Rich to lean sensor threshold voltage

0104

O2 Sensor Monitor Bank 1 Sensor 4

0.00

1.275

Volts

0.005 Rich to lean sensor threshold voltage

0105

O2 Sensor Monitor Bank 2 Sensor 1

0.00

1.275

Volts

0.005 Rich to lean sensor threshold voltage

0106

O2 Sensor Monitor Bank 2 Sensor 2

0.00

1.275

Volts

0.005 Rich to lean sensor threshold voltage

0107

O2 Sensor Monitor Bank 2 Sensor 3

0.00

1.275

Volts

0.005 Rich to lean sensor threshold voltage

0108

O2 Sensor Monitor Bank 2 Sensor 4

0.00

1.275

Volts

0.005 Rich to lean sensor threshold voltage

0109

O2 Sensor Monitor Bank 3 Sensor 1

0.00

1.275

Volts

0.005 Rich to lean sensor threshold voltage

010A

O2 Sensor Monitor Bank 3 Sensor 2

0.00

1.275

Volts

0.005 Rich to lean sensor threshold voltage

010B

O2 Sensor Monitor Bank 3 Sensor 3

0.00

1.275

Volts

0.005 Rich to lean sensor threshold voltage

010C

O2 Sensor Monitor Bank 3 Sensor 4

0.00

1.275

Volts

0.005 Rich to lean sensor threshold voltage


010D

O2 Sensor Monitor Bank 4 Sensor 1

0.00

1.275

Volts

0.005 Rich to lean sensor threshold voltage

010E

O2 Sensor Monitor Bank 4 Sensor 2

0.00

1.275

Volts

0.005 Rich to lean sensor threshold voltage

010F

O2 Sensor Monitor Bank 4 Sensor 3

0.00

1.275

Volts

0.005 Rich to lean sensor threshold voltage

0110

O2 Sensor Monitor Bank 4 Sensor 4

0.00

1.275

Volts

0.005 Rich to lean sensor threshold voltage

0201

O2 Sensor Monitor Bank 1 Sensor 1

0.00

1.275

Volts

0.005 Lean to Rich sensor threshold voltage

0202

O2 Sensor Monitor Bank 1 Sensor 2

0.00

1.275

Volts

0.005 Lean to Rich sensor threshold voltage

0203

O2 Sensor Monitor Bank 1 Sensor 3

0.00

1.275

Volts

0.005 Lean to Rich sensor threshold voltage

0204

O2 Sensor Monitor Bank 1 Sensor 4

0.00

1.275

Volts

0.005 Lean to Rich sensor threshold voltage

0205

O2 Sensor Monitor Bank 2 Sensor 1

0.00

1.275

Volts

0.005 Lean to Rich sensor threshold voltage

0206

O2 Sensor Monitor Bank 2 Sensor 2

0.00

1.275

Volts

0.005 Lean to Rich sensor threshold voltage

0207

O2 Sensor Monitor Bank 2 Sensor 3

0.00

1.275

Volts

0.005 Lean to Rich sensor threshold voltage

0208

O2 Sensor Monitor Bank 2 Sensor 4

0.00

1.275

Volts

0.005 Lean to Rich sensor threshold voltage

0209

O2 Sensor Monitor Bank 3 Sensor 1

0.00

1.275

Volts

0.005 Lean to Rich sensor threshold voltage


020A

O2 Sensor Monitor Bank 3 Sensor 2

0.00

1.275

Volts

0.005 Lean to Rich sensor threshold voltage

020B

O2 Sensor Monitor Bank 3 Sensor 3

0.00

1.275

Volts

0.005 Lean to Rich sensor threshold voltage

020C

O2 Sensor Monitor Bank 3 Sensor 4

0.00

1.275

Volts

0.005 Lean to Rich sensor threshold voltage

020D

O2 Sensor Monitor Bank 4 Sensor 1

0.00

1.275

Volts

0.005 Lean to Rich sensor threshold voltage

020E

O2 Sensor Monitor Bank 4 Sensor 2

0.00

1.275

Volts

0.005 Lean to Rich sensor threshold voltage

020F

O2 Sensor Monitor Bank 4 Sensor 3

0.00

1.275

Volts

0.005 Lean to Rich sensor threshold voltage

0210

O2 Sensor Monitor Bank 4 Sensor 4

0.00

1.275

Volts

0.005 Lean to Rich sensor threshold voltage

PID

(hex)

Data bytes returned

Description

Min value

Max value

Units

Formula[a]

Mode 09

PID

(hex)

Data bytes returned

Description

Min value

Max value

Units

Formula[a]

00

4

Mode 9 supported

PIDs (01 to 20)

Bit encoded. [A7..D0] = [PID $01..PID $20] See

below

01

1

VIN Message Count in PID 02. Only for ISO 9141-2, ISO

14230-4 and SAE J1850.

Usually value will be 5.

02

17-20

Vehicle  Identification Number(VIN)

17-char VIN, ASCII-

encoded and left-padded with null chars (0x00) if needed to.


03

1

Calibration ID message count for PID 04. Only for ISO 9141-2, ISO 14230-4 and SAE J1850.

It will be a multiple of 4 (4 messages are needed for each ID).

04

16

Calibration ID

Up to 16 ASCII chars. Data bytes not used will be reported as null bytes (0x00).

05

1

Calibration verification numbers (CVN) message count for PID06. Only for ISO 9141-2, ISO 14230-4 and SAE J1850.

06

4

Calibration Verification Numbers (CVN)

Raw data left-padded with null characters (0x00). Usually displayed as hex string.

07

1

In-use performance tracking message count for

PID 08 and 0B. Only for ISO 9141-2, ISO 14230-4 and SAE J1850.

8

10

8 if sixteen (16) values are required to be reported, 9 if eighteen

(18) values are required to be reported, and 10 if twenty (20) values are required to be reported (one message reports two values, each one consisting in two bytes).

08

4

In-use performance tracking for spark ignition vehicles

4 or 5 messages, each one containing 4 bytes (two values). See below

09

1

ECU name message count for PID 0A

0A

20

ECU name

ASCII-coded. Right- padded with null chars (0x00).

0B

4

In-use performance tracking for

5 messages, each one containing 4 bytes (two values). See below


compression ignition vehicles

PID

(hex)

Data bytes returned

Description

Min value

Max value

Units

Formula[a]

1.     In the formula column,lettersA, B,C, etc. represent the decimal equivalent of the first,second, third, etc. bytes of data. Where a (?) appears, contradictory or incomplete information wasavailable.

Bitwise encoded PIDs

Some of the PIDsin the above table cannotbe explainedwith a simple formula.A more elaborate explanation ofthese data is provided here:

Mode 1 PID 00

A request for this PID returns4 bytesofdata. Each bit, from MSBto LSB,representsone of the next 32 PIDs andis giving information aboutif it is supported.

For example,if the car response isBE1FA813, it can be decoded likethis:

Hexa deci mal

B

E

1

F

A

8

1

3

Binar y

1

0

1

1

1

1

1

0

0

0

0

1

1

1

1

1

1

0

1

0

1

0

0

0

0

0

0

1

0

0

1

1

Supp orted

?

Y

e s

N

o

Y

e s

Y

e s

Y

e s

Y

e s

Y

e s

N

o

N

o

N

o

N

o

Y

e s

Y

e s

Y

e s

Y

e s

Y

e s

Y

e s

N

o

Y

e s

N

o

Y

e s

N

o

N

o

N

o

N

o

N

o

N

o

Y

e s

N

o

N

o

Y

e s

Y

e s

PID

num ber

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

A

0

B

0

C

0

D

0

E

0

F

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

1

A

1

B

1

C

1

D

1

E

1

F

2

0

So, supported PIDs

are: 01, 03, 04, 05, 06, 07, 0C, 0D,0E, 0F, 10, 11, 13, 15, 1C,1F and20

Mode 1 PID 01

A request forthis PID returns4 bytesof data.

The first byte contains two pieces of information.BitA7 (MSB of byte A, the firstbyte) indicates whether ornot the MIL (checkengine light)is illuminated.

BitsA6 through A0 representthe number of diagnostic troublecodescurrently flagged in theECU.

The second, third, and fourthbytes giveinformationabout the availability andcompleteness of certainon-boardtests. Note that test availabilityis indicated by set

(1) bit and completeness is indicated by reset (0) bit.

Bit

Name

Definition


A7

MIL

Off or On, indicates if the CEL/MIL is on (or should be on)

A6- A0

DTC_CNT

Number of confirmed emissions-related DTCs available for display.

B7

RESERVED

Reserved (should be 0)

B3

NO NAME

0 = Spark ignition monitors supported

1 = Compression ignition monitors supported

Here are the common bit B definitions, they are testbased.

Test available

Test incomplete

Misfire

B0

B4

Fuel System

B1

B5

Components

B2

B6

The third and fourthbytes are to be interpreted differently depending on if the engine is spark ignitionor compressionignition. Inthesecond (B) byte, bit 3 indicates how to interpret theC and D bytes,with0 being sparkand1 (set) being compression.

The bytes C andD forspark ignition monitors:

Test available

Test incomplete

Catalyst

C0

D0

Heated Catalyst

C1

D1

Evaporative System

C2

D2

Secondary Air System

C3

D3

A/C Refrigerant

C4

D4

Oxygen Sensor

C5

D5

Oxygen Sensor Heater

C6

D6

EGR System

C7

D7

Andthe bytesC and D for compressionignitionmonitors:

Test available

Test incomplete

NMHC Catalyst[a]

C0

D0

NOx/SCR Monitor

C1

D1

Boost Pressure

C3

D3

Exhaust Gas Sensor

C5

D5

PM filter monitoring

C6

D6

EGR and/or VVT System

C7

D7

1.  NMHC may stand for Non-Methane HydroCarbons, butJ1979 does not enlightenus.


Mode 1 PID 41

A request for this PID returns4 bytesof data.Thefirst byte is alwayszero. The second,third, and fourth bytes giveinformation aboutthe availability and completenessof certain on-board tests.Note that test availability is represented by a set(1) bit and completeness is represented by a reset (0)bit:

Test enabled

Test incomplete

Reserved

B3

B7

Components

B2

B6

Fuel System

B1

B5

Misfire

B0

B4

EGR System

C7

D7

Oxygen Sensor Heater

C6

D6

Oxygen Sensor

C5

D5

A/C Refrigerant

C4

D4

Secondary Air System

C3

D3

Evaporative System

C2

D2

Heated Catalyst

C1

D1

Catalyst

C0

D0

Mode 1 PID 78

A request for this PID will return9 bytesof data. The first byte is a bit encoded fieldindicating whichEGTsensorsaresupported:

Byte

Description

A

Supported EGT sensors

B-C

Temperature read by EGT11

D-E

Temperature read by EGT12

F-G

Temperature read by EGT13

H-I

Temperature read by EGT14

The firstbyte isbit-encoded asfollows:

Bit

Description

A7-A4

Reserved

A3

EGT bank 1, sensor 4 Supported?

A2

EGT bank 1, sensor 3 Supported?

A1

EGT bank 1, sensor 2 Supported?

A0

EGT bank 1, sensor 1 Supported?


 
The remaining bytesare 16 bit integersindicating the temperature in degreesCelsius in the range -40 to 6513.5 (scale 0.1), using the

usual                                                   formula (MSB is A, LSB isB).Only valuesfor which the corresponding sensoris supported are meaningful.

The samestructure appliesto PID79, but values are for sensorsof bank 2.

Mode 3(no PID required)

A request for this mode returns alist of the DTCs that havebeen set. The listis encapsulated using the ISO15765-2 protocol.

If there are twoor fewer DTCs(4 bytes) they are returnedin an ISO-TP Single Frame(SF). Three ormoreDTCs in the list are reported inmultiple frames, with the exactcount of framesdependenton the communication type and addressing details.

Each trouble code requires2 bytesto describe.Thetext description of a trouble code may be decodedas follows. The first character in thetrouble code is determinedby the first two bits in the first byte:

A7-A6

First DTC character

00

P - Powertrain

01

C - Chassis

10

B - Body

11

U - Network

The two following digits are encoded as2 bits. The second character in the DTC is a number defined by the following table:

A5-A4

Second DTC character

00

0

01

1

10

2

11

3

The third characterin the DTC is a number defined by

A3-A0

Third DTC character

0000

0

0001

1

0010

2

0011

3

0100

4


0101

5

0110

6

0111

7

1000

8

1001

9

1010

A

1011

B

1100

C

1101

D

1110

E

1111

F

The fourth and fifth characters are definedin the same way asthe third, but using bits B7-B4 and B3-B0. The resultingfive-charactercodeshould look something like "U0158" and canbe looked up in a table ofOBD-II DTCs. Hexadecimalcharacters(0-9,A-F), while relatively rare, areallowed in the last 3 positions of the code itself. Mode 9 PID 08

It provides informationabout track in-use performance forcatalyst banks,oxygen sensorbanks, evaporative leak detectionsystems,EGR systemsand secondary air system.

The numerator for each componentor systemtracks thenumber of times that allconditions necessary for aspecific monitor to detect a malfunction have beenencountered. Thedenominator for each component or system tracksthe number of times that thevehicle has beenoperated in the specifiedconditions.

All data itemsof the In-use Performance Tracking record consist of two (2) bytesandarereported in this order (eachmessage containstwo items, hence themessage lengthis 4):

Mnemonic

Description

OBDCOND

OBD Monitoring Conditions Encountered Counts

IGNCNTR

Ignition Counter

CATCOMP1

Catalyst Monitor Completion Counts Bank 1

CATCOND1

Catalyst Monitor Conditions Encountered Counts Bank 1

CATCOMP2

Catalyst Monitor Completion Counts Bank 2

CATCOND2

Catalyst Monitor Conditions Encountered Counts Bank 2

O2SCOMP1

O2 Sensor Monitor Completion Counts Bank 1

O2SCOND1

O2 Sensor Monitor Conditions Encountered Counts Bank 1


O2SCOMP2

O2 Sensor Monitor Completion Counts Bank 2

O2SCOND2

O2 Sensor Monitor Conditions Encountered Counts Bank 2

EGRCOMP

EGR Monitor Completion Condition Counts

EGRCOND

EGR Monitor Conditions Encountered Counts

AIRCOMP

AIR Monitor Completion Condition Counts (Secondary Air)

AIRCOND

AIR Monitor Conditions Encountered Counts (Secondary Air)

EVAPCOMP

EVAP Monitor Completion Condition Counts

EVAPCOND

EVAP Monitor Conditions Encountered Counts

SO2SCOMP1

Secondary O2 Sensor Monitor Completion Counts Bank 1

SO2SCOND1

Secondary O2 Sensor Monitor Conditions Encountered Counts Bank 1

SO2SCOMP2

Secondary O2 Sensor Monitor Completion Counts Bank 2

SO2SCOND2

Secondary O2 Sensor Monitor Conditions Encountered Counts Bank 2

Mode 9 PID 0B

Itprovides information about track in-use performance for NMHCcatalyst,NOx catalyst monitor, NOx adsorbermonitor, PM filter monitor, exhaust gas sensormonitor, EGR/ VVT monitor, boost pressure monitor andfuel system monitor.

Alldata items consist of two (2)bytesandare reported in this order (each messagecontains two items, hence message lengthis 4):

Mnemonic

Description

OBDCOND

OBD Monitoring Conditions Encountered Counts

IGNCNTR

Ignition Counter

HCCATCOMP

NMHC Catalyst Monitor Completion Condition Counts

HCCATCOND

NMHC Catalyst Monitor Conditions Encountered Counts

NCATCOMP

NOx/SCR Catalyst Monitor Completion Condition Counts

NCATCOND

NOx/SCR Catalyst Monitor Conditions Encountered Counts

NADSCOMP

NOx Adsorber Monitor Completion Condition Counts

NADSCOND

NOx Adsorber Monitor Conditions Encountered Counts

PMCOMP

PM Filter Monitor Completion Condition Counts

PMCOND

PM Filter Monitor Conditions Encountered Counts

EGSCOMP

Exhaust Gas Sensor Monitor Completion Condition Counts

EGSCOND

Exhaust Gas Sensor Monitor Conditions Encountered Counts


EGRCOMP

EGR and/or VVT Monitor Completion Condition Counts

EGRCOND

EGR and/or VVT Monitor Conditions Encountered Counts

BPCOMP

Boost Pressure Monitor Completion Condition Counts

BPCOND

Boost Pressure Monitor Conditions Encountered Counts

FUELCOMP

Fuel Monitor Completion Condition Counts

FUELCOND

Fuel Monitor Conditions Encountered Counts

Enumerated PIDs

SomePIDsare to be interpreted specially,and aren't necessarily exactly bitwiseencoded, orin any scale. The values for these PIDsare enumerated.

Mode 1 PID 03

A request forthis PID returns2 bytesof data.Thefirst byte describes fuelsystem #1.

Value

Description

1

Open loop due to insufficient engine temperature

2

Closed loop, using oxygen sensor feedback to determine fuel mix

4

Open loop due to engine load OR fuel cut due to deceleration

8

Open loop due to system failure

16

Closed loop, using at least one oxygen sensor but there is a fault in the feedback system

Any other valueis an invalid response. There can only be one bitset at most.

The second byte describes fuelsystem#2 (if it exists)and is encoded identically to the firstbyte.

Mode 1 PID 12

A request for this PID returnsa single byte of data which describes the secondary air status.

Value

Description

1

Upstream

2

Downstream of catalytic converter

4

From the outside atmosphere or off

8

Pump commanded on for diagnostics

Any other valueis an invalid response. There can only be one bitset at most.

Mode 1 PID 1C


A request for this PID returnsa single byte of data which describes which OBDstandards this ECU was designed to comply with. The differentvalues the data byte canhold are shown below,nextto what they mean:

Value

Description

1

OBD-II as defined by the CARB

2

OBD as defined by the EPA

3

OBD and OBD-II

4

OBD-I

5

Not OBD compliant

6

EOBD (Europe)

7

EOBD and OBD-II

8

EOBD and OBD

9

EOBD, OBD and OBD II

10

JOBD (Japan)

11

JOBD and OBD II

12

JOBD and EOBD

13

JOBD, EOBD, and OBD II

14

Reserved

15

Reserved

16

Reserved

17

Engine Manufacturer Diagnostics (EMD)

18

Engine Manufacturer Diagnostics Enhanced (EMD+)

19

Heavy Duty On-Board Diagnostics (Child/Partial) (HD OBD-C)

20

Heavy Duty On-Board Diagnostics (HD OBD)

21

World Wide Harmonized OBD (WWH OBD)

22

Reserved

23

Heavy Duty Euro OBD Stage I without NOx control (HD EOBD-I)

24

Heavy Duty Euro OBD Stage I with NOx control (HD EOBD-I N)

25

Heavy Duty Euro OBD Stage II without NOx control (HD EOBD-II)

26

Heavy Duty Euro OBD Stage II with NOx control (HD EOBD-II N)

27

Reserved

28

Brazil OBD Phase 1 (OBDBr-1)

29

Brazil OBD Phase 2 (OBDBr-2)


30

Korean OBD (KOBD)

31

India OBD I (IOBD I)

32

India OBD II (IOBD II)

33

Heavy Duty Euro OBD Stage VI (HD EOBD-IV)

34-250

Reserved

251-255

Not available for assignment (SAE J1939 special meaning)

FuelType Coding

Mode 1 PID 51 returns a value froman enumerated list giving the fueltype ofthe vehicle. The fuel type is returnedasa single byte, and the valueis givenbythe following table:

Value

Description

0

Not available

1

Gasoline

2

Methanol

3

Ethanol

4

Diesel

5

LPG

6

CNG

7

Propane

8

Electric

9

Bifuel running Gasoline

10

Bifuel running Methanol

11

Bifuel running Ethanol

12

Bifuel running LPG

13

Bifuel running CNG

14

Bifuel running Propane

15

Bifuel running Electricity

16

Bifuel running electric and combustion engine

17

Hybrid gasoline

18

Hybrid Ethanol

19

Hybrid Diesel

20

Hybrid Electric

21

Hybrid running electric and combustion engine

22

Hybrid Regenerative


23     Bifuel running diesel

Any othervalue is reserved by ISO/SAE.There are currently nodefinitionsfor flexible-fuel vehicle.

Non-standard PIDsEdit

The majority ofall OBD-II PIDs in use are non-standard.Formost modern vehicles, there are many more functions supported on the OBD-II interface than are coveredby the standard PIDs,and there is relatively minor overlap betweenvehicle manufacturers for these non-standard PIDs.

There is very limitedinformation availablein the public domain for non-standard PIDs. The primary source ofinformation on non-standard PIDs acrossdifferent manufacturers is maintained by the US-based Equipmentand ToolInstituteand onlyavailable to members. The price ofETI membership foraccess to scan codes startsfrom US$7,500.[2]

However, even ETI membership will not provide fulldocumentation for non-standardPIDs. ETI state:[2]

Some OEMs refuse to use ETI as a one-stop source of scan tool information.

They prefer to do business with each tool company separately. These companiesalso require that you enter into a contract with them. The charges vary but here is a snapshot of today's[when?] per year charges as we know them: GM $50,000

Honda$5,000 Suzuki $1,000

BMW $17,500 plus $1,000 per update. Updates occur every quarter. (This is more now, but do not have exact number)

CAN (11-bit) busformatEdit

The PIDquery andresponse occurson the vehicle's CANbus. Standard OBD requests andresponsesusefunctional addresses. The diagnosticreaderinitiatesa query using CAN ID$7DF,which acts as a broadcast address, and accepts responses fromanyID in the range $7E8 to $7EF. ECUs that canrespond to OBD querieslisten both to the functionalbroadcast ID of$7DF and one assigned IDin the range $7E0to

$7E7. Their response has an ID of their assigned ID plus 8 e.g. $7E8 through$7EF.

This approach allows up to eight ECUs, eachindependently responding to OBD queries. Thediagnostic reader canusethe ID in the ECU response frame to continue communication with aspecific ECU. In particular, multi-framecommunication requiresa responseto the specific ECU ID ratherthan to ID $7DF.

CAN bus may also be used for communication beyondthe standard OBD messages.Physical addressing uses particular CAN IDsfor specific modules(e.g.,720 for the instrument cluster in Fords) withproprietary frame payloads.


Query

The functional PID query is sentto the vehicle on the CANbus at ID 7DFh, using8 data bytes.The bytes are:

Byte

PID

Type

0

1

2

3

4

5

6

7

SAE

Standard

Number of additional data bytes: 2

Mode

01 = show current data; 02 = freeze frame;

etc.

PID code (e.g.: 05 =

Engine coolant temperature)

not used (may be 55h)

Vehicle specific

Number of additional data bytes: 3

Custom mode: (e.g.: 22 =

enhanced data)

PID code (e.g.: 4980h)

not used (may be 00h or 55h)

Response

The vehicle responds to the PID query on theCAN bus with message IDs that depend on which module responded. Typically the engine or mainECU responds at ID7E8h. Other modules, like the hybrid controlleror battery controllerin a Prius, respond at 07E9h, 07EAh, 07EBh, etc.These are 8h higherthanthe physical addressthemodule responds to. Even though thenumber of bytes in the returnedvalue is variable, the message uses8 data bytesregardless (CAN bus protocol form Frameformat with8 data bytes).Thebytes are:

Byte

PID

Type

0

1

2

3

4

5

6

7

SAE

Standa rd 7E8h,

7E9h,

7EAh,

etc.

Number of addition al

data bytes: 3 to 6

Custom mode Same as query, except that 40h is added to the mode value. So:

41h =

PID code (e.g.: 05 =

Engine coolant temperatu re)

value of the specifie d paramet er, byte 0

value, byte 1 (optiona l)

value, byte 2 (option al)

value, byte 3 (option al)

not used (may be 00h or 55h)


show current data; 42h =

freeze frame; etc.

Vehicl e specifi c 7E8h,

or 8h + physic al ID of modul e.

Number of addition al

data bytes: 4to 7

Custom mode: same as query, except that 40h is added to the mode value.(e. g.: 62h =

response to mode 22h request)

PID code (e.g.: 4980h)

value of the specifie d paramet er, byte 0

value, byte 1 (option al)

value, byte 2 (option al)

value, byte 3 (option al)

Vehicl

Number

7Fh this

Custom

31h

not used

mode:

e

a general

(e.g.: 22h

specifi

response

=

c

usually

enhanced

7E8h,

indicatin

diagnostic

or 8h +

of

g the

data by

physic

addition

module

PID, 21h

al ID

al

doesn't

=

of

data

recogniz

enhanced

modul

bytes:

e the

data by

e.

3

request.

offset)

(may be 00h)

See alsoEdit

§  On-board diagnostics

§  Engine controlunit

ReferencesEdit

1.     "Escape PHEV TechInfo - PIDs". Electric AutoAssociation - Plug in Hybrid ElectricVehicle. Retrieved11 December 2013.


2.     "ETI Full Membership FAQ". Retrieved 29 November 2013. showing cost of access toOBD-II PID documentation

External linksEdit

§  OBD II Error Codes DefinitionandLookup, including manufacturer-specificcodes.

§  OBD-II Error Codes Definition,descriptionand repair information formost makes of vehicles.

§  Generic/Manufacturer OBD2 Codes andTheirMeanings

§  Directive 98/69/EC of the European Parliament andof the Council of 13October  1998.

§  CAN BusVehicles Partial list of 2003-2007 vehicles whichsupport the OBD-II CAN bus standard.

§  Fault Code Examples Sample fault code data read using the OBDKey Bluetooth, OBDKey USB andOBDKey WLANvehicle interface units.

Read in another language

·     

o     Mobile

o     Desktop

·        Content isavailable underCC BY-SA 3.0unlessotherwisenoted.

·        Termsof Use

·        Privacy


猜你喜欢

转载自blog.csdn.net/fz835304205/article/details/80661104