常用排序算法备忘录(一)

转载:http://www.cnblogs.com/eniac12/p/5329396.html

排序算法稳定性的简单形式化定义为:如果Ai = Aj,排序前Ai在Aj之前,排序后Ai还在Aj之前,则称这种排序算法是稳定的。通俗地讲就是保证排序前后两个相等的数的相对顺序不变。

1.冒泡排序

冒泡排序是一种极其简单的排序算法,也是我所学的第一个排序算法。它重复地走访过要排序的元素,依次比较相邻两个元素,如果他们的顺序错误就把他们调换过来,直到没有元素再需要交换,排序完成。这个算法的名字由来是因为越小(或越大)的元素会经由交换慢慢“浮”到数列的顶端。

#include <stdio.h>

// 分类 -------------- 内部比较排序
// 数据结构 ---------- 数组
// 最差时间复杂度 ---- O(n^2)
// 最优时间复杂度 ---- 如果能在内部循环第一次运行时,使用一个旗标来表示有无需要交换的可能,可以把最优时间复杂度降低到O(n)
// 平均时间复杂度 ---- O(n^2)
// 所需辅助空间 ------ O(1)
// 稳定性 ------------ 稳定

void Swap(int A[], int i, int j)
{
    int temp = A[i];
    A[i] = A[j];
    A[j] = temp;
}

void BubbleSort(int A[], int n)
{
    for (int j = 0; j < n - 1; j++)         // 每次最大元素就像气泡一样"浮"到数组的最后
    {
        for (int i = 0; i < n - 1 - j; i++) // 依次比较相邻的两个元素,使较大的那个向后移
        {
            if (A[i] > A[i + 1])            // 如果条件改成A[i] >= A[i + 1],则变为不稳定的排序算法
            {
                Swap(A, i, i + 1);
            }
        }
    }
}

int main()
{
    int A[] = { 6, 5, 3, 1, 8, 7, 2, 4 };    // 从小到大冒泡排序
    int n = sizeof(A) / sizeof(int);
    BubbleSort(A, n);
    printf("冒泡排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}

2.选择排序

选择排序也是一种简单直观的排序算法。它的工作原理很容易理解:初始时在序列中找到最小(大)元素,放到序列的起始位置作为已排序序列;然后,再从剩余未排序元素中继续寻找最小(大)元素,放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

#include <stdio.h>

// 分类 -------------- 内部比较排序
// 数据结构 ---------- 数组
// 最差时间复杂度 ---- O(n^2)
// 最优时间复杂度 ---- O(n^2)
// 平均时间复杂度 ---- O(n^2)
// 所需辅助空间 ------ O(1)
// 稳定性 ------------ 不稳定

void Swap(int A[], int i, int j)
{
    int temp = A[i];
    A[i] = A[j];
    A[j] = temp;
}

void SelectionSort(int A[], int n)
{
    for (int i = 0; i < n - 1; i++)         // i为已排序序列的末尾
    {
        int min = i;
        for (int j = i + 1; j < n; j++)     // 未排序序列
        {
            if (A[j] < A[min])              // 找出未排序序列中的最小值
            {
                min = j;
            }
        }
        if (min != i)
        {
            Swap(A, min, i);    // 放到已排序序列的末尾,该操作很有可能把稳定性打乱,所以选择排序是不稳定的排序算法
        }
    }
}

int main()
{
    int A[] = { 8, 5, 2, 6, 9, 3, 1, 4, 0, 7 }; // 从小到大选择排序
    int n = sizeof(A) / sizeof(int);
    SelectionSort(A, n);
    printf("选择排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}

3.插入排序

插入排序是一种简单直观的排序算法。它的工作原理非常类似于我们抓扑克牌

对于未排序数据(右手抓到的牌),在已排序序列(左手已经排好序的手牌)中从后向前扫描,找到相应位置并插入。

#include <stdio.h>

// 分类 ------------- 内部比较排序
// 数据结构 ---------- 数组
// 最差时间复杂度 ---- 最坏情况为输入序列是降序排列的,此时时间复杂度O(n^2)
// 最优时间复杂度 ---- 最好情况为输入序列是升序排列的,此时时间复杂度O(n)
// 平均时间复杂度 ---- O(n^2)
// 所需辅助空间 ------ O(1)
// 稳定性 ------------ 稳定

void InsertionSort(int A[], int n)
{
    for (int i = 1; i < n; i++)         // 类似抓扑克牌排序
    {
        int get = A[i];                 // 右手抓到一张扑克牌
        int j = i - 1;                  // 拿在左手上的牌总是排序好的
        while (j >= 0 && A[j] > get)    // 将抓到的牌与手牌从右向左进行比较
        {
            A[j + 1] = A[j];            // 如果该手牌比抓到的牌大,就将其右移
            j--;
        }
        A[j + 1] = get; // 直到该手牌比抓到的牌小(或二者相等),将抓到的牌插入到该手牌右边(相等元素的相对次序未变,所以插入排序是稳定的)
    }
}

int main()
{
    int A[] = { 6, 5, 3, 1, 8, 7, 2, 4 };// 从小到大插入排序
    int n = sizeof(A) / sizeof(int);
    InsertionSort(A, n);
    printf("插入排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}

4.二分插入排序

可以采用二分查找法来减少比较操作的次数,我们称为二分插入排序

#include <stdio.h>

// 分类 -------------- 内部比较排序
// 数据结构 ---------- 数组
// 最差时间复杂度 ---- O(n^2)
// 最优时间复杂度 ---- O(nlogn)
// 平均时间复杂度 ---- O(n^2)
// 所需辅助空间 ------ O(1)
// 稳定性 ------------ 稳定

void InsertionSortDichotomy(int A[], int n)
{
    for (int i = 1; i < n; i++)
    {
        int get = A[i];                    // 右手抓到一张扑克牌
        int left = 0;                    // 拿在左手上的牌总是排序好的,所以可以用二分法
        int right = i - 1;                // 手牌左右边界进行初始化
        while (left <= right)            // 采用二分法定位新牌的位置
        {
            int mid = (left + right) / 2;
            if (A[mid] > get)
                right = mid - 1;
            else
                left = mid + 1;
        }
        for (int j = i - 1; j >= left; j--)    // 将欲插入新牌位置右边的牌整体向右移动一个单位
        {
            A[j + 1] = A[j];
        }
        A[left] = get;                    // 将抓到的牌插入手牌
    }
}


int main()
{
    int A[] = { 5, 2, 9, 4, 7, 6, 1, 3, 8 };// 从小到大二分插入排序
    int n = sizeof(A) / sizeof(int);
    InsertionSortDichotomy(A, n);
    printf("二分插入排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}

5.希尔排序

希尔排序,也叫递减增量排序,是插入排序的一种更高效的改进版本。希尔排序是不稳定的排序算法。

#include <stdio.h>  


// 分类 -------------- 内部比较排序
// 数据结构 ---------- 数组
// 最差时间复杂度 ---- 根据步长序列的不同而不同。已知最好的为O(n(logn)^2)
// 最优时间复杂度 ---- O(n)
// 平均时间复杂度 ---- 根据步长序列的不同而不同。
// 所需辅助空间 ------ O(1)
// 稳定性 ------------ 不稳定


void ShellSort(int A[], int n)
{
    int h = 0;
    while (h <= n)                          // 生成初始增量
    {
        h = 3 * h + 1;
    }
    while (h >= 1)
    {
        for (int i = h; i < n; i++)
        {
            int j = i - h;
            int get = A[i];
            while (j >= 0 && A[j] > get)
            {
                A[j + h] = A[j];
                j = j - h;
            }
            A[j + h] = get;
        }
        h = (h - 1) / 3;                    // 递减增量
    }
}


int main()
{
    int A[] = { 5, 2, 9, 4, 7, 6, 1, 3, 8 };// 从小到大希尔排序
    int n = sizeof(A) / sizeof(int);
    ShellSort(A, n);
    printf("希尔排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}

6.归并排序

归并排序算法主要依赖归并(Merge)操作。归并操作指的是将两个已经排序的序列合并成一个序列的操作

#include <stdio.h>
#include <limits.h>

// 分类 -------------- 内部比较排序
// 数据结构 ---------- 数组
// 最差时间复杂度 ---- O(nlogn)
// 最优时间复杂度 ---- O(nlogn)
// 平均时间复杂度 ---- O(nlogn)
// 所需辅助空间 ------ O(n)
// 稳定性 ------------ 稳定


void Merge(int A[], int left, int mid, int right)// 合并两个已排好序的数组A[left...mid]和A[mid+1...right]
{
    int len = right - left + 1;
    int *temp = new int[len];       // 辅助空间O(n)
    int index = 0;
    int i = left;                   // 前一数组的起始元素
    int j = mid + 1;                // 后一数组的起始元素
    while (i <= mid && j <= right)
    {
        temp[index++] = A[i] <= A[j] ? A[i++] : A[j++];  // 带等号保证归并排序的稳定性
    }
    while (i <= mid)
    {
        temp[index++] = A[i++];
    }
    while (j <= right)
    {
        temp[index++] = A[j++];
    }
    for (int k = 0; k < len; k++)
    {
        A[left++] = temp[k];
    }
}

void MergeSortRecursion(int A[], int left, int right)    // 递归实现的归并排序(自顶向下)
{
    if (left == right)    // 当待排序的序列长度为1时,递归开始回溯,进行merge操作
        return;
    int mid = (left + right) / 2;
    MergeSortRecursion(A, left, mid);
    MergeSortRecursion(A, mid + 1, right);
    Merge(A, left, mid, right);
}

void MergeSortIteration(int A[], int len)    // 非递归(迭代)实现的归并排序(自底向上)
{
    int left, mid, right;// 子数组索引,前一个为A[left...mid],后一个子数组为A[mid+1...right]
    for (int i = 1; i < len; i *= 2)        // 子数组的大小i初始为1,每轮翻倍
    {
        left = 0;
        while (left + i < len)              // 后一个子数组存在(需要归并)
        {
            mid = left + i - 1;
            right = mid + i < len ? mid + i : len - 1;// 后一个子数组大小可能不够
            Merge(A, left, mid, right);
            left = right + 1;               // 前一个子数组索引向后移动
        }
    }
}

int main()
{
    int A1[] = { 6, 5, 3, 1, 8, 7, 2, 4 };      // 从小到大归并排序
    int A2[] = { 6, 5, 3, 1, 8, 7, 2, 4 };
    int n1 = sizeof(A1) / sizeof(int);
    int n2 = sizeof(A2) / sizeof(int);
    MergeSortRecursion(A1, 0, n1 - 1);          // 递归实现
    MergeSortIteration(A2, n2);                 // 非递归实现
    printf("递归实现的归并排序结果:");
    for (int i = 0; i < n1; i++)
    {
        printf("%d ", A1[i]);
    }
    printf("\n");
    printf("非递归实现的归并排序结果:");
    for (int i = 0; i < n2; i++)
    {
        printf("%d ", A2[i]);
    }
    printf("\n");
    return 0;
}

7.堆排序

堆排序是指利用堆这种数据结构所设计的一种选择排序算法。堆是一种近似完全二叉树的结构(通常堆是通过一维数组来实现的),并满足性质:以最大堆(也叫大根堆、大顶堆)为例,其中父结点的值总是大于它的孩子节点。

#include <stdio.h>

// 分类 -------------- 内部比较排序
// 数据结构 ---------- 数组
// 最差时间复杂度 ---- O(nlogn)
// 最优时间复杂度 ---- O(nlogn)
// 平均时间复杂度 ---- O(nlogn)
// 所需辅助空间 ------ O(1)
// 稳定性 ------------ 不稳定


void Swap(int A[], int i, int j)
{
    int temp = A[i];
    A[i] = A[j];
    A[j] = temp;
}

void Heapify(int A[], int i, int size)  // 从A[i]向下进行堆调整
{
    int left_child = 2 * i + 1;         // 左孩子索引
    int right_child = 2 * i + 2;        // 右孩子索引
    int max = i;                        // 选出当前结点与其左右孩子三者之中的最大值
    if (left_child < size && A[left_child] > A[max])
        max = left_child;
    if (right_child < size && A[right_child] > A[max])
        max = right_child;
    if (max != i)
    {
        Swap(A, i, max);                // 把当前结点和它的最大(直接)子节点进行交换
        Heapify(A, max, size);          // 递归调用,继续从当前结点向下进行堆调整
    }
}

int BuildHeap(int A[], int n)           // 建堆,时间复杂度O(n)
{
    int heap_size = n;
    for (int i = heap_size / 2 - 1; i >= 0; i--) // 从每一个非叶结点开始向下进行堆调整
        Heapify(A, i, heap_size);
    return heap_size;
}

void HeapSort(int A[], int n)
{
    int heap_size = BuildHeap(A, n);    // 建立一个最大堆
    while (heap_size > 1)           // 堆(无序区)元素个数大于1,未完成排序
    {
        // 将堆顶元素与堆的最后一个元素互换,并从堆中去掉最后一个元素
        // 此处交换操作很有可能把后面元素的稳定性打乱,所以堆排序是不稳定的排序算法
        Swap(A, 0, --heap_size);
        Heapify(A, 0, heap_size);     // 从新的堆顶元素开始向下进行堆调整,时间复杂度O(logn)
    }
}

int main()
{
    int A[] = { 5, 2, 9, 4, 7, 6, 1, 3, 8 };// 从小到大堆排序
    int n = sizeof(A) / sizeof(int);
    HeapSort(A, n);
    printf("堆排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}

8.快速排序

在平均状况下,排序n个元素要O(nlogn)次比较。在最坏状况下则需要O(n^2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他O(nlogn)算法更快,因为它的内部循环可以在大部分的架构上很有效率地被实现出来。

#include <stdio.h>

// 分类 ------------ 内部比较排序
// 数据结构 --------- 数组
// 最差时间复杂度 ---- 每次选取的基准都是最大(或最小)的元素,导致每次只划分出了一个分区,需要进行n-1次划分才能结束递归,时间复杂度为O(n^2)
// 最优时间复杂度 ---- 每次选取的基准都是中位数,这样每次都均匀的划分出两个分区,只需要logn次划分就能结束递归,时间复杂度为O(nlogn)
// 平均时间复杂度 ---- O(nlogn)
// 所需辅助空间 ------ 主要是递归造成的栈空间的使用(用来保存left和right等局部变量),取决于递归树的深度,一般为O(logn),最差为O(n)       
// 稳定性 ---------- 不稳定

void Swap(int A[], int i, int j)
{
    int temp = A[i];
    A[i] = A[j];
    A[j] = temp;
}

int Partition(int A[], int left, int right)  // 划分函数
{
    int pivot = A[right];               // 这里每次都选择最后一个元素作为基准
    int tail = left - 1;                // tail为小于基准的子数组最后一个元素的索引
    for (int i = left; i < right; i++)  // 遍历基准以外的其他元素
    {
        if (A[i] <= pivot)              // 把小于等于基准的元素放到前一个子数组末尾
        {
            Swap(A, ++tail, i);
        }
    }
    Swap(A, tail + 1, right);           // 最后把基准放到前一个子数组的后边,剩下的子数组既是大于基准的子数组
                                        // 该操作很有可能把后面元素的稳定性打乱,所以快速排序是不稳定的排序算法
    return tail + 1;                    // 返回基准的索引
}

void QuickSort(int A[], int left, int right)
{
    if (left >= right)
        return;
    int pivot_index = Partition(A, left, right); // 基准的索引
    QuickSort(A, left, pivot_index - 1);
    QuickSort(A, pivot_index + 1, right);
}

int main()
{
    int A[] = { 5, 2, 9, 4, 7, 6, 1, 3, 8 }; // 从小到大快速排序
    int n = sizeof(A) / sizeof(int);
    QuickSort(A, 0, n - 1);
    printf("快速排序结果:");
    for (int i = 0; i < n; i++)
    {
        printf("%d ", A[i]);
    }
    printf("\n");
    return 0;
}

猜你喜欢

转载自blog.csdn.net/thankna/article/details/80468285