【caffe】基本数据结构blob说明,用faster-rcnn 之 RPN网络的结构解析进行说明

原文地址:http://blog.csdn.net/sloanqin/article/details/51545125

    blob是caffe中的基本数据结构,简单理解就是一个“4维数组”。但是,这个4维数组有什么意义?
BTW,TensorFlow这款google出的框架,带出了tensor(张量)的概念。虽然是数学概念,个人还是倾向于简单理解为“多维数组”,那么放在这里,caffe的blob就相当于一个特殊的tensor了。而矩阵就是二维的张量。

anyway,看看blob的4个维度都代表什么:

num: 图像数量
channel:通道数量
width:图像宽度
height:图像高度

     caffe中默认使用的SGD随机梯度下降,其实是mini-batch SGD,每个batch,就是一堆图片。这一个batch的图片,就存储在一个blob中。

     当然,blob并不是这么受限的、专门给batch内的图片做存储用的。实际上,参数、梯度,也可以用blob存储的。只要是caffe的网络中传递的数据,都可以用blob存储。

     而且,blob实际上也并不一定是4维的。它在实现上其实就是1维的指针,而我们作为用户感受到的“多个维度”是通过shape来操作的。

     下面用faster-rcnn 之 RPN网络进行说明

【前面5层】:作者RPN网络前面的5层借用的是ZF网络,这个网络的结构图我截个图放在下面,并分析下为什么是这样子的;


1、首先,输入图片大小是 224*224*3(这个3是三个通道,也就是RGB三种)

2、然后第一层的卷积核维度是 7*7*3*96 (意义是96个三位的7*7*3卷积核);

3、所以conv1得到的结果是110*110*96 (这个110来自于 (224-7+pad)/2 +1 ,这个pad是我们常说的填充,也就是在图片的周围补充像素,这样做的目的是为了能够整除,除以2是因为2是图中的stride, 这个计算方法在上面建议的文档中有说明与推导的);

4、然后就是做一次池化,得到pool1, 池化的核的大小是3*3,所以池化后图片的维度是55*55*96  (  (110-3+pad)/2 +1 =55 );

5、然后接着就是再一次卷积,这次的卷积核的维度是5*5*96*256 ,得到conv2:26*26*256;

6、后面就是类似的过程了,我就不详细一步步算了,要注意有些地方除法除不尽,作者是做了填充了,在caffe的prototxt文件中,可以看到每一层的pad的大小;

7、最后作者取的是conv5的输出,也就是13*13*256送给RPN网络的;

说明:

    第一感觉是,conv1得到的应该是110x110x3x96的结果,而不是110x110x96。后来问了别人,再看看书,发现自己忽略了一个细节,就是卷积之后有一个∑和sigmoid的两个过程,前者是累加,后者是映射到0-1之间。具体到faster-rcnn,∑对应的就是:各个通道上对应位置做累加;而激活函数使用的应该是ReLU吧。anyway,这里的累加和激活函数处理后,通道数就变成了一个;也就是,对于一个滤波器,滑窗滤波+累加、激活函数后,得到的一个feature map。

    再具体点说,这里的滤波器(卷积核),是3维的,(Width,Height,Channel)这样;我们用它在一个feature map上按滑窗方式做卷积,其实是所有Channel上同时做sliding window的操作;每个sliding windows位置上,所有通道卷积的结果累加起来,再送给激活函数ReLU处理,就得到结果feature map中的一个像素的值。

    值得注意的是,滤波器的通道数量,和要处理的feature map的通道数量,其实可以不一样的,可以比feature map维度少一点,这相当于可以自行指定要选取feature map中的某些channel做卷积操作,相当于有一个采样的过程,甚至可以仅仅使用一个channel的卷积结果。具体例子,可以参考《人工智能(第三版)》(王万良著)里面的例子,结合例子中算出的“要学习的参数数量”来理解。


【RPN部分】:然后,我们看看RPN部分的结构:


1、前面我们指出,这个conv feature map的维度是13*13*256的;

2、作者在文章中指出,sliding window的大小是3*3的,那么如何得到这个256-d的向量呢? 这个很简单了,我们只需要一个3*3*256*256这样的一个4维的卷积核,就可以将每一个3*3的sliding window 卷积成一个256维的向量;

这里读者要注意啊,作者这里画的示意图 仅仅是 针对一个sliding window的;在实际实现中,我们有很多个sliding window,所以得到的并不是一维的256-d向量,实际上还是一个3维的矩阵数据结构;可能写成for循环做sliding window大家会比较清楚,当用矩阵运算的时候,会稍微绕些;

3、然后就是k=9,所以cls layer就是18个输出节点了,那么在256-d和cls layer之间使用一个1*1*256*18的卷积核,就可以得到cls layer,当然这个1*1*256*18的卷积核就是大家平常理解的全连接;所以全连接只是卷积操作的一种特殊情况(当卷积核的大小与图片大小相同的时候,其实所谓的卷积就是全连接了);

4、reg layer也是一样了,reg layer的输出是36个,所以对应的卷积核是1*1*256*36,这样就可以得到reg layer的输出了;

5、然后cls layer 和reg layer后面都会接到自己的损失函数上,给出损失函数的值,同时会根据求导的结果,给出反向传播的数据,这个过程读者还是参考上面给的文档,写的挺清楚的;





猜你喜欢

转载自blog.csdn.net/ytusdc/article/details/79528987