STM32F103C8T6使用modbus协议读取温湿度传感器

任务目标

用stm32最小核心板+AHT20模块,完成一个 modbus接口的温湿度Slave设备,能够让上位机PC通过modbus协议获取温湿度。主程序采用多任务框架,比如RT-thread Nano。

任务材料

KEIL5
CubeMx
串口助手
modbuspoll
STM32F103C8T6

移植RT-Thread

cubemx安装

在这里插入图片描述在这里插入图片描述
下载完成之后,前面的框会变成绿色。
在这里插入图片描述

keil安装

(1)打开keil软件,点击pack installer
(2)按图进行操作即可
在这里插入图片描述

Cube配置

项目配置

选择芯片STM32F103C8
点击software packs,点击select components
在这里插入图片描述
选择3.1.5版本的三个,然后点ok
在这里插入图片描述
勾选如下内容
在这里插入图片描述
RCC配置:
在这里插入图片描述
USART1配置:
在这里插入图片描述
SYS:
在这里插入图片描述
GPIO:选择PC13,推挽输出

在这里插入图片描述
NVIC:
在这里插入图片描述

I2C:
在这里插入图片描述
TIM3:
在这里插入图片描述
时钟树:
在这里插入图片描述
然后生成项目即可

keil代码修改

先添加一个AHT文件夹,在里面加入.c和.h文件
在这里插入图片描述
加入路径中,
在这里插入图片描述
再添加AHT.c文件和AHT.h文件
AHT.c

- /*******************************************/
/*@版权所有:广州奥松电子有限公司          */
/*@作者:温湿度传感器事业部                */
/*@版本:V1.2                              */
/*******************************************/
//#include "main.h" 
#include "AHT.h" 
#include "gpio.h"
#include "i2c.h"


void Delay_N10us(uint32_t t)//延时函数
{
    
    
  uint32_t k;

   while(t--)
  {
    
    
    for (k = 0; k < 2; k++);//110
  }
}

void SensorDelay_us(uint32_t t)//延时函数
{
    
    
		
	for(t = t-2; t>0; t--)
	{
    
    
		Delay_N10us(1);
	}
}

void Delay_4us(void)		//延时函数
{
    
    	
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
}
void Delay_5us(void)		//延时函数
{
    
    	
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);

}

void Delay_1ms(uint32_t t)		//延时函数
{
    
    
   while(t--)
  {
    
    
    SensorDelay_us(1000);//延时1ms
  }
}


//void AHT20_Clock_Init(void)		//延时函数
//{
    
    
//	RCC_APB2PeriphClockCmd(CC_APB2Periph_GPIOB,ENABLE);
//}

void SDA_Pin_Output_High(void)   //将PB7配置为输出 , 并设置为高电平, PB7作为I2C的SDA
{
    
    
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_SET);
}

void SDA_Pin_Output_Low(void)  //将P7配置为输出  并设置为低电平
{
    
    
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_RESET);
}

void SDA_Pin_IN_FLOATING(void)  //SDA配置为浮空输入
{
    
    
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_INPUT;//浮空
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init( GPIOB,&GPIO_InitStruct);
}


void SCL_Pin_Output_High(void) //SCL输出高电平,P6作为I2C的SCL
{
    
    
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_SET);
}

void SCL_Pin_Output_Low(void) //SCL输出低电平
{
    
    
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_RESET);
}

void Init_I2C_Sensor_Port(void) //初始化I2C接口,输出为高电平
{
    
    	
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_SET);

	
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//推挽输出
	GPIO_InitStruct.Pin = GPIO_PIN_6;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_SET);
	
}
void I2C_Start(void)		 //I2C主机发送START信号
{
    
    
	SDA_Pin_Output_High();
	SensorDelay_us(8);
	SCL_Pin_Output_High();
	SensorDelay_us(8);
	SDA_Pin_Output_Low();
	SensorDelay_us(8);
	SCL_Pin_Output_Low();
	SensorDelay_us(8);   
}


void AHT20_WR_Byte(uint8_t Byte) //往AHT20写一个字节
{
    
    
	uint8_t Data,N,i;	
	Data=Byte;
	i = 0x80;
	for(N=0;N<8;N++)
	{
    
    
		SCL_Pin_Output_Low(); 
		Delay_4us();	
		if(i&Data)
		{
    
    
			SDA_Pin_Output_High();
		}
		else
		{
    
    
			SDA_Pin_Output_Low();
		}	
			
    SCL_Pin_Output_High();
		Delay_4us();
		Data <<= 1;
		 
	}
	SCL_Pin_Output_Low();
	SensorDelay_us(8);   
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
}	


uint8_t AHT20_RD_Byte(void)//从AHT20读取一个字节
{
    
    
		uint8_t Byte,i,a;
	Byte = 0;
	SCL_Pin_Output_Low();
	
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	
	for(i=0;i<8;i++)
	{
    
    
    SCL_Pin_Output_High();
		
		Delay_5us();
		a=0;
		
		//if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_15)) a=1;
		if(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_7)) a=1;
		Byte = (Byte<<1)|a;
		
		//SCL_Pin_Output_Low();
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_RESET);
		Delay_5us();
	}
  SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	return Byte;
}


uint8_t Receive_ACK(void)   //看AHT20是否有回复ACK
{
    
    
	uint16_t CNT;
	CNT = 0;
	SCL_Pin_Output_Low();	
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	SCL_Pin_Output_High();	
	SensorDelay_us(8);	
	while((HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_7))  && CNT < 100) 
	CNT++;
	if(CNT == 100)
	{
    
    
		return 0;
	}
 	SCL_Pin_Output_Low();	
	SensorDelay_us(8);	
	return 1;
}

void Send_ACK(void)		  //主机回复ACK信号
{
    
    
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);	
	SDA_Pin_Output_Low();
	SensorDelay_us(8);	
	SCL_Pin_Output_High();	
	SensorDelay_us(8);
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);
}

void Send_NOT_ACK(void)	//主机不回复ACK
{
    
    
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
	SDA_Pin_Output_High();
	SensorDelay_us(8);
	SCL_Pin_Output_High();	
	SensorDelay_us(8);		
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
    SDA_Pin_Output_Low();
	SensorDelay_us(8);
}

void Stop_I2C(void)	  //一条协议结束
{
    
    
	SDA_Pin_Output_Low();
	SensorDelay_us(8);
	SCL_Pin_Output_High();	
	SensorDelay_us(8);
	SDA_Pin_Output_High();
	SensorDelay_us(8);
}

uint8_t AHT20_Read_Status(void)//读取AHT20的状态寄存器
{
    
    

	uint8_t Byte_first;	
	I2C_Start();
	AHT20_WR_Byte(0x71);
	Receive_ACK();
	Byte_first = AHT20_RD_Byte();
	Send_NOT_ACK();
	Stop_I2C();
	return Byte_first;
}

uint8_t AHT20_Read_Cal_Enable(void)  //查询cal enable位有没有使能
{
    
    
	uint8_t val = 0;//ret = 0,
  val = AHT20_Read_Status();
	 if((val & 0x68)==0x08)
		 return 1;
   else  return 0;
 }

void AHT20_SendAC(void) //向AHT20发送AC命令
{
    
    

	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xac);//0xAC采集命令
	Receive_ACK();
	AHT20_WR_Byte(0x33);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

}

//CRC校验类型:CRC8/MAXIM
//多项式:X8+X5+X4+1
//Poly:0011 0001  0x31
//高位放到后面就变成 1000 1100 0x8c
//C现实代码:
uint8_t Calc_CRC8(uint8_t *message,uint8_t Num)
{
    
    
	uint8_t i;
	uint8_t byte;
	uint8_t crc=0xFF;
  for(byte=0; byte<Num; byte++)
  {
    
    
    crc^=(message[byte]);
    for(i=8;i>0;--i)
    {
    
    
      if(crc&0x80) crc=(crc<<1)^0x31;
      else crc=(crc<<1);
    }
  }
        return crc;
}

void AHT20_Read_CTdata(uint32_t *ct) //没有CRC校验,直接读取AHT20的温度和湿度数据
{
    
    
		volatile uint8_t  Byte_1th=0;
	volatile uint8_t  Byte_2th=0;
	volatile uint8_t  Byte_3th=0;
	volatile uint8_t  Byte_4th=0;
	volatile uint8_t  Byte_5th=0;
	volatile uint8_t  Byte_6th=0;
	 uint32_t RetuData = 0;
	uint16_t cnt = 0;
	AHT20_SendAC();//向AHT10发送AC命令
	Delay_1ms(80);//延时80ms左右	
    cnt = 0;
	while(((AHT20_Read_Status()&0x80)==0x80))//直到状态bit[7]为0,表示为空闲状态,若为1,表示忙状态
	{
    
    
		SensorDelay_us(1508);
		if(cnt++>=100)
		{
    
    
		 break;
		 }
	}
	I2C_Start();
	AHT20_WR_Byte(0x71);
	Receive_ACK();
	Byte_1th = AHT20_RD_Byte();//状态字,查询到状态为0x98,表示为忙状态,bit[7]为1;状态为0x1C,或者0x0C,或者0x08表示为空闲状态,bit[7]为0
	Send_ACK();
	Byte_2th = AHT20_RD_Byte();//湿度
	Send_ACK();
	Byte_3th = AHT20_RD_Byte();//湿度
	Send_ACK();
	Byte_4th = AHT20_RD_Byte();//湿度/温度
	Send_ACK();
	Byte_5th = AHT20_RD_Byte();//温度
	Send_ACK();
	Byte_6th = AHT20_RD_Byte();//温度
	Send_NOT_ACK();
	Stop_I2C();

	RetuData = (RetuData|Byte_2th)<<8;
	RetuData = (RetuData|Byte_3th)<<8;
	RetuData = (RetuData|Byte_4th);
	RetuData =RetuData >>4;
	ct[0] = RetuData;//湿度
	RetuData = 0;
	RetuData = (RetuData|Byte_4th)<<8;
	RetuData = (RetuData|Byte_5th)<<8;
	RetuData = (RetuData|Byte_6th);
	RetuData = RetuData&0xfffff;
	ct[1] =RetuData; //温度

}


void AHT20_Read_CTdata_crc(uint32_t *ct) //CRC校验后,读取AHT20的温度和湿度数据
{
    
    
		volatile uint8_t  Byte_1th=0;
	volatile uint8_t  Byte_2th=0;
	volatile uint8_t  Byte_3th=0;
	volatile uint8_t  Byte_4th=0;
	volatile uint8_t  Byte_5th=0;
	volatile uint8_t  Byte_6th=0;
	volatile uint8_t  Byte_7th=0;
	 uint32_t RetuData = 0;
	 uint16_t cnt = 0;
	// uint8_t  CRCDATA=0;
	 uint8_t  CTDATA[6]={
    
    0};//用于CRC传递数组
	
	AHT20_SendAC();//向AHT10发送AC命令
	Delay_1ms(80);//延时80ms左右	
    cnt = 0;
	while(((AHT20_Read_Status()&0x80)==0x80))//直到状态bit[7]为0,表示为空闲状态,若为1,表示忙状态
	{
    
    
		SensorDelay_us(1508);
		if(cnt++>=100)
		{
    
    
		 break;
		}
	}
	
	I2C_Start();

	AHT20_WR_Byte(0x71);
	Receive_ACK();
	CTDATA[0]=Byte_1th = AHT20_RD_Byte();//状态字,查询到状态为0x98,表示为忙状态,bit[7]为1;状态为0x1C,或者0x0C,或者0x08表示为空闲状态,bit[7]为0
	Send_ACK();
	CTDATA[1]=Byte_2th = AHT20_RD_Byte();//湿度
	Send_ACK();
	CTDATA[2]=Byte_3th = AHT20_RD_Byte();//湿度
	Send_ACK();
	CTDATA[3]=Byte_4th = AHT20_RD_Byte();//湿度/温度
	Send_ACK();
	CTDATA[4]=Byte_5th = AHT20_RD_Byte();//温度
	Send_ACK();
	CTDATA[5]=Byte_6th = AHT20_RD_Byte();//温度
	Send_ACK();
	Byte_7th = AHT20_RD_Byte();//CRC数据
	Send_NOT_ACK();                           //注意: 最后是发送NAK
	Stop_I2C();
	
	if(Calc_CRC8(CTDATA,6)==Byte_7th)
	{
    
    
	RetuData = (RetuData|Byte_2th)<<8;
	RetuData = (RetuData|Byte_3th)<<8;
	RetuData = (RetuData|Byte_4th);
	RetuData =RetuData >>4;
	ct[0] = RetuData;//湿度
	RetuData = 0;
	RetuData = (RetuData|Byte_4th)<<8;
	RetuData = (RetuData|Byte_5th)<<8;
	RetuData = (RetuData|Byte_6th);
	RetuData = RetuData&0xfffff;
	ct[1] =RetuData; //温度
		
	}
	else
	{
    
    
		ct[0]=0x00;
		ct[1]=0x00;//校验错误返回值,客户可以根据自己需要更改
	}//CRC数据
}


void AHT20_Init(void)   //初始化AHT20
{
    
    	
	Init_I2C_Sensor_Port();
	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xa8);//0xA8进入NOR工作模式
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

	Delay_1ms(10);//延时10ms左右

	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xbe);//0xBE初始化命令,AHT20的初始化命令是0xBE,   AHT10的初始化命令是0xE1
	Receive_ACK();
	AHT20_WR_Byte(0x08);//相关寄存器bit[3]置1,为校准输出
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();
	Delay_1ms(10);//延时10ms左右
}
void JH_Reset_REG(uint8_t addr)
{
    
    
	
	uint8_t Byte_first,Byte_second,Byte_third;
	I2C_Start();
	AHT20_WR_Byte(0x70);//原来是0x70
	Receive_ACK();
	AHT20_WR_Byte(addr);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

	Delay_1ms(5);//延时5ms左右
	I2C_Start();
	AHT20_WR_Byte(0x71);//
	Receive_ACK();
	Byte_first = AHT20_RD_Byte();
	Send_ACK();
	Byte_second = AHT20_RD_Byte();
	Send_ACK();
	Byte_third = AHT20_RD_Byte();
	Send_NOT_ACK();
	Stop_I2C();
	
  Delay_1ms(10);//延时10ms左右
	I2C_Start();
	AHT20_WR_Byte(0x70);///
	Receive_ACK();
	AHT20_WR_Byte(0xB0|addr);//寄存器命令
	Receive_ACK();
	AHT20_WR_Byte(Byte_second);
	Receive_ACK();
	AHT20_WR_Byte(Byte_third);
	Receive_ACK();
	Stop_I2C();
	
	Byte_second=0x00;
	Byte_third =0x00;
}

void AHT20_Start_Init(void)
{
    
    
	JH_Reset_REG(0x1b);
	JH_Reset_REG(0x1c);
	JH_Reset_REG(0x1e);
}

AHT.h

#ifndef _AHT20_DEMO_
#define _AHT20_DEMO_

#include "main.h"  

void Delay_N10us(uint32_t t);//延时函数
void SensorDelay_us(uint32_t t);//延时函数
void Delay_4us(void);		//延时函数
void Delay_5us(void);		//延时函数
void Delay_1ms(uint32_t t);	
void AHT20_Clock_Init(void);		//延时函数
void SDA_Pin_Output_High(void)  ; //将PB15配置为输出 , 并设置为高电平, PB15作为I2C的SDA
void SDA_Pin_Output_Low(void);  //将P15配置为输出  并设置为低电平
void SDA_Pin_IN_FLOATING(void);  //SDA配置为浮空输入
void SCL_Pin_Output_High(void); //SCL输出高电平,P14作为I2C的SCL
void SCL_Pin_Output_Low(void); //SCL输出低电平
void Init_I2C_Sensor_Port(void); //初始化I2C接口,输出为高电平
void I2C_Start(void);		 //I2C主机发送START信号
void AHT20_WR_Byte(uint8_t Byte); //往AHT20写一个字节
uint8_t AHT20_RD_Byte(void);//从AHT20读取一个字节
uint8_t Receive_ACK(void);   //看AHT20是否有回复ACK
void Send_ACK(void)	;	  //主机回复ACK信号
void Send_NOT_ACK(void);	//主机不回复ACK
void Stop_I2C(void);	  //一条协议结束
uint8_t AHT20_Read_Status(void);//读取AHT20的状态寄存器
uint8_t AHT20_Read_Cal_Enable(void);  //查询cal enable位有没有使能
void AHT20_SendAC(void); //向AHT20发送AC命令
uint8_t Calc_CRC8(uint8_t *message,uint8_t Num);
void AHT20_Read_CTdata(uint32_t *ct); //没有CRC校验,直接读取AHT20的温度和湿度数据
void AHT20_Read_CTdata_crc(uint32_t *ct); //CRC校验后,读取AHT20的温度和湿度数据
void AHT20_Init(void);   //初始化AHT20
void JH_Reset_REG(uint8_t addr);///重置寄存器
void AHT20_Start_Init(void);///上电初始化进入正常测量状态
#endif

移植freeModebusRTU(HAL)

在https://github.com/cwalter-at/freemodbus可以下载到需要的文件
打开下载的文件,进入demo,新建STM32MB的文件夹,并将以下文件复制进去
在这里插入图片描述
再把modbus文件夹也复制到STM32MB中
在这里插入图片描述
打开MDK-ARM文件,把STM32MB复制进去
添加文件,新建名为MB和MB_Port的组,MB内添加STM32MB文件夹下modbus文件夹内所有文件,MB_Port内添加STM32MB文件夹下port文件夹内所有.c文件以及根目录的demo.c文件
在这里插入图片描述在这里插入图片描述
添加头文件的路径
在这里插入图片描述

创建任务

在这里插入图片描述
在里面加入如下代码:

#include "rtthread.h"
#include "main.h"
#include "stdio.h"
#include "usart.h"
#include "AHT20-21_DEMO_V1_3.h" 
#include "mb.h"
#include "mbport.h"
 
struct rt_thread led1_thread;
rt_uint8_t rt_led1_thread_stack[128];
void led1_task_entry(void *parameter);
 
 
//初始化线程函数
void MX_RT_Thread_Init(void)
{
    
    
	//初始化LED1线程
	rt_thread_init(&led1_thread,"led1",led1_task_entry,RT_NULL,&rt_led1_thread_stack[0],sizeof(rt_led1_thread_stack),3,20);
	//开启线程调度
	rt_thread_startup(&led1_thread);
}
 
//主任务
void MX_RT_Thread_Process(void)
{
    
    
	( void )eMBPoll(  );//启动modbus侦听

}
 
//LED1任务
void led1_task_entry(void *parameter)
{
    
    
	while(1)
	{
    
    
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_15, GPIO_PIN_RESET);
		rt_thread_delay(500);
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_15, GPIO_PIN_SET);
		rt_thread_delay(500);
	}
}

找到下图文件,把USART2改成USART1
在这里插入图片描述
main.c

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under Ultimate Liberty license
  * SLA0044, the "License"; You may not use this file except in compliance with
  * the License. You may obtain a copy of the License at:
  *                             www.st.com/SLA0044
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "rtthread.h"	// RT-Thread 头文件
#include "dma.h"
#include "i2c.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
#include "mb.h"
#include "mbport.h"
#include "AHT.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
extern void MX_RT_Thread_Init(void);	// RT-Thread 初始化函数,初始化并执行各种进程
extern void MX_RT_Thread_Process(void);	// RT-Thread 主进程
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
    
    
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_I2C1_Init();
  MX_TIM3_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
	AHT20_Init();	//初始化温度传感器并进行延时确保数据准确性
//	HAL_Delay(2000);
	eMBInit( MB_RTU, 0x01, 1, 115200, MB_PAR_NONE);//初始化modbus,走modbusRTU,从站地址为0x01,端口为1。
	eMBEnable();//使能modbus
	MX_RT_Thread_Init();	//初始化 RT-Thread 进程
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    
    
		
		//( void )eMBPoll(  );//启动modbus侦听,由于在 RT-Thread 主进程中进行了监听启动,所以这里直接调用 RT-Thread 主进程
		
		MX_RT_Thread_Process();	//调用主进程
		
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
    
    
  RCC_OscInitTypeDef RCC_OscInitStruct = {
    
    0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {
    
    0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    
    
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    
    
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
    
    
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
    
    
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
    
    
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

编译并烧录

结果

打开modbuspoll,点击Setup,按下图配置
在这里插入图片描述
设置connect
在这里插入图片描述
PC13小灯在闪烁,
在这里插入图片描述

参考资料

https://blog.csdn.net/weixin_46129506/article/details/121914039
https://blog.csdn.net/qq_47281915/article/details/122328414
https://blog.csdn.net/weixin_54435584/article/details/128449883?spm=1001.2014.3001.5502

猜你喜欢

转载自blog.csdn.net/cjhz2333/article/details/128466735