一文带你了解MySQL之optimizer trace神器的功效

前言:

对于MySQL 5.6以及之前的版本来说,查询优化器就像是一个黑盒子一样,你只能通过EXPLAIN语句查看到最后优化器决定使用的执行计划,却无法知道它为什么做这个决策。这对于一部分喜欢刨根问底的小伙伴来说简直是灾难:“我就觉得使用其他的执行方案⽐EXPLAIN输出的这种方案强,凭什么优化器做的决定和我想的不一样呢?”这篇文章主要介绍使用optimizer trace查看优化器生成执行计划的整个过程

optimizer trace 表的神奇功效

在MySQL 5.6以及之后的版本中,设计MySQL的⼤叔贴⼼的为这部分⼩伙伴提出了一个optimizer trace的功能,这个功能可以让我们方便的查看优化器生成执行计划的整个过程,这个功能的开启与关闭由系统变量optimizer_trace决定,我们看一下:

mysql> show variables like 'optimizer_trace';
+-----------------+--------------------------+
| Variable_name   | Value                    |
+-----------------+--------------------------+
| optimizer_trace | enabled=off,one_line=off |
+-----------------+--------------------------+
1 row in set (0.01 sec)

可以看到enabled值为off,表明这个功能默认是关闭的。

小提示:
one_line的值是控制输出格式的,如果为on那么所有输出都将在一行中展示,不适合⼈阅读,所以我们就保持其默认值为off吧。

如果想打开这个功能,必须⾸先把enabled的值改为on,就像这样:

mysql> SET optimizer_trace="enabled=on";
Query OK, 0 rows affected (0.00 sec)

然后我们就可以输入我们想要查看优化过程的查询语句,当该查询语句执行完成后,就可以到information_schema数据库下的OPTIMIZER_TRACE表中查看完整的优化过程。这个OPTIMIZER_TRACE表有4个列,分别是:

  • QUERY:表示我们的查询语句。
  • TRACE:表示优化过程的JSON格式⽂本。
  • MISSING_BYTES_BEYOND_MAX_MEM_SIZE:由于优化过程可能会输出很多,如果超过某个限制时,多余的⽂本将不会被显示,这个字段展示了被忽略的⽂本字节数。
  • INSUFFICIENT_PRIVILEGES:表示是否没有权限查看优化过程,默认值是0,只有某些特殊情况下才会是1,我们暂时不关心这个字段的值。

完整的使用optimizer trace功能的步骤总结如下:

步骤一: 打开optimizer trace功能 (默认情况下它是关闭的):

mysql> SET optimizer_trace="enabled=on";
Query OK, 0 rows affected (0.01 sec)

步骤二: 这里输入你自己的查询语句

SELECT	...;

步骤三: 从OPTIMIZER_TRACE表中查看上一个查询的优化过程

SELECT * FROM information_schema.OPTIMIZER_TRACE;

步骤四: 可能你还要观察其他语句执行的优化过程,重复上边的第2、3步

步骤五: 当你停⽌查看语句的优化过程时,把optimizer trace功能关闭

mysql> SET optimizer_trace="enabled=off";
Query OK, 0 rows affected (0.01 sec)

现在我们有一个搜索条件比较多的查询语句,它的执行计划如下:

mysql> EXPLAIN SELECT * FROM s1 WHERE key1 > 'z' AND  key2 < 1000000 AND key3 IN ('aa', 'bb', 'cb') AND   common_field = 'abc';
+----+-------------+-------+------------+-------+----------------------------+----------+---------+------+------+----------+------------------------------------+
| id | select_type | table | partitions | type  | possible_keys              | key      | key_len | ref  | rows | filtered | Extra                              |
+----+-------------+-------+------------+-------+----------------------------+----------+---------+------+------+----------+------------------------------------+
|  1 | SIMPLE      | s1    | NULL       | range | idx_key2,idx_key1,idx_key3 | idx_key1 | 403     | NULL |    1 |     5.00 | Using index condition; Using where |
+----+-------------+-------+------------+-------+----------------------------+----------+---------+------+------+----------+------------------------------------+
1 row in set, 1 warning (0.00 sec)

可以看到该查询可能使用到的索引有3个,那么为什么优化器最终选择了idx_key1而不选择其他的索引或者直接全表扫描呢?这时候就可以通过otpimzer trace 功能来查看优化器的具体工作过程:

mysql> SET optimizer_trace="enabled=on";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM s1 WHERE key1 > 'z' AND  key2 < 1000000 AND key3 IN ('aa', 'bb', 'cb') AND   common_field = 'abc';
Empty set (0.00 sec)

mysql> SELECT * FROM information_schema.OPTIMIZER_TRACE\G   

我们直接看一下通过查询OPTIMIZER_TRACE表得到的输出(我使用#后跟随注释的形式为大家解释了优化过程中的一些比较重要的点,大家重点关注一下):

*************************** 1. row ***************************
# 分析的查询语句是什么
QUERY: SELECT * FROM s1 WHERE key1 > 'z' AND  key2 < 1000000 AND key3 IN ('aa', 'bb', 'cb') AND   common_field = 'abc'
# 优化的具体过程
TRACE: {
  "steps": [
    {
      "join_preparation": {	# prepare阶段
        "select#": 1,
        "steps": [
          {
            "IN_uses_bisection": true
          },
          {
            "expanded_query": "/* select#1 */ select `s1`.`id` AS `id`,`s1`.`key1` AS `key1`,`s1`.`key2` AS `key2`,`s1`.`key3` AS `key3`,`s1`.`key_part1` AS `key_part1`,`s1`.`key_part2` AS `key_part2`,`s1`.`key_part3` AS `key_part3`,`s1`.`common_field` AS `common_field` from `s1` where ((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')) and (`s1`.`common_field` = 'abc'))"
          }
        ]
      }
    },
    {
      "join_optimization": {  # optimize阶段
        "select#": 1,
        "steps": [
          {
            "condition_processing": { # 处理搜索条件
              "condition": "WHERE",
              # 原始搜索条件
              "original_condition": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')) and (`s1`.`common_field` = 'abc'))",
              "steps": [
                {
                # 等值传递转换
                  "transformation": "equality_propagation",
                  "resulting_condition": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')) and multiple equal('abc', `s1`.`common_field`))"
                },
                {
                # 常量传递转换
                  "transformation": "constant_propagation",
                  "resulting_condition": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')) and multiple equal('abc', `s1`.`common_field`))"
                },
                {
                # 去除没用的条件
                  "transformation": "trivial_condition_removal",
                  "resulting_condition": "((`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')) and multiple equal('abc', `s1`.`common_field`))"
                }
              ]
            }
          },
          {
          # 替换虚拟生成列
            "substitute_generated_columns": {
            }
          },
          {
          # 表的依赖信息
            "table_dependencies": [
              {
                "table": "`s1`",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ]
              }
            ]
          },
          {
            "ref_optimizer_key_uses": [
            ]
          },
          {
          # 预估不同单表访问方法的访问成本
            "rows_estimation": [
              {
                "table": "`s1`",
                "range_analysis": {
                  "table_scan": {
                    "rows": 20250,
                    "cost": 2051.35
                  },
                   # 分析可能使用的索引
                  "potential_range_indexes": [
                    {
                      "index": "PRIMARY", # 主键不可用
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_key2",# idx_key2可能被使用
                      "usable": true,
                      "key_parts": [
                        "key2"
                      ]
                    },
                    {
                      "index": "idx_key1", # idx_key1可能被使用
                      "usable": true,
                      "key_parts": [
                        "key1",
                        "id"
                      ]
                    },
                    {
                      "index": "idx_key3", # idx_key3可能被使用
                      "usable": true,
                      "key_parts": [
                        "key3",
                        "id"
                      ]
                    },
                    {
                      "index": "idx_key_part", # idx_key_part不可用
                      "usable": false,
                      "cause": "not_applicable"
                    }
                  ],
                  "setup_range_conditions": [
                  ],
                  "group_index_range": {
                    "chosen": false,
                    "cause": "not_group_by_or_distinct"
                  },
                  "skip_scan_range": {
                    "potential_skip_scan_indexes": [
                      {
                        "index": "idx_key2",
                        "usable": false,
                        "cause": "query_references_nonkey_column"
                      },
                      {
                        "index": "idx_key1",
                        "usable": false,
                        "cause": "query_references_nonkey_column"
                      },
                      {
                        "index": "idx_key3",
                        "usable": false,
                        "cause": "query_references_nonkey_column"
                      }
                    ]
                  },
                  # 分析各种可能使用的索引的成本
                  "analyzing_range_alternatives": {
                    "range_scan_alternatives": [
                      {
                      # 使用idx_key2的成本分析
                        "index": "idx_key2",
                        # 使用idx_key2的范围区间
                        "ranges": [
                          "NULL < key2 < 1000000"
                        ],
                        "index_dives_for_eq_ranges": true,# 是否使用index dive
                        "rowid_ordered": false,# 使用该索引获取的记录是否按照主键排序
                        "using_mrr": false, # 是否使用mrr
                        "index_only": false, # 是否是索引覆盖访问
                        "in_memory": 1,
                        "rows": 10125,# 使用该索引获取的记录条数
                        "cost": 3544.01,# 使用该索引的成本
                        "chosen": false,  # 使用该索引的成本
                        "cause": "cost" # 因为成本太大所以不选择该索引
                      },
                      {
                      # 使用idx_key1的成本分析
                        "index": "idx_key1",
                         # 使用idx_key1的范围区间
                        "ranges": [
                          "'z' < key1"
                        ],
                        "index_dives_for_eq_ranges": true,# 同上
                        "rowid_ordered": false,# 同上
                        "using_mrr": false,# 同上
                        "index_only": false,# 同上
                        "in_memory": 1,
                        "rows": 1,# 同上
                        "cost": 0.61,# 同上
                        "chosen": true# 是否选择该索引
                      },
                      {
                       # 使用idx_key3的成本分析
                        "index": "idx_key3",
                          # 使用idx_key3的范围区间
                        "ranges": [
                          "key3 = 'aa'",
                          "key3 = 'bb'",
                          "key3 = 'cb'"
                        ],
                        "index_dives_for_eq_ranges": true,# 同上
                        "rowid_ordered": false,# 同上
                        "using_mrr": false,# 同上
                        "index_only": false,# 同上
                        "in_memory": 1,
                        "rows": 3,# 同上
                        "cost": 1.81,# 同上
                        "chosen": false,# 同上
                        "cause": "cost"# 同上
                      }
                    ],
                    # 分析使用索引合并的成本
                    "analyzing_roworder_intersect": {
                      "usable": false,
                      "cause": "too_few_roworder_scans"
                    }
                  },
                  # 对于上述单表查询s1最优的访问方法
                  "chosen_range_access_summary": {
                    "range_access_plan": {
                      "type": "range_scan",
                      "index": "idx_key1",
                      "rows": 1,
                      "ranges": [
                        "'z' < key1"
                      ]
                    },
                    "rows_for_plan": 1,
                    "cost_for_plan": 0.61,
                    "chosen": true
                  }
                }
              }
            ]
          },
          {
          
            # 分析各种可能的执行计划
            #(对多表查询这可能有很多种不同的方案,单表查询的方案上边已经分析过了,直接选取idx_key1就好)
            "considered_execution_plans": [
              {
                "plan_prefix": [
                ],
                "table": "`s1`",
                "best_access_path": {
                  "considered_access_paths": [
                    {
                      "rows_to_scan": 1,
                      "access_type": "range",
                      "range_details": {
                        "used_index": "idx_key1"
                      },
                      "resulting_rows": 1,
                      "cost": 0.71,
                      "chosen": true
                    }
                  ]
                },
                "condition_filtering_pct": 100,
                "rows_for_plan": 1,
                "cost_for_plan": 0.71,
                "chosen": true
              }
            ]
          },
          {
            "attaching_conditions_to_tables": {
              "original_condition": "((`s1`.`common_field` = 'abc') and (`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')))",
              "attached_conditions_computation": [
              ],
              "attached_conditions_summary": [
                {
                  "table": "`s1`",
                  "attached": "((`s1`.`common_field` = 'abc') and (`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')))"
                }
              ]
            }
          },
          {
          # 尝试给查询添加一些其他的查询条件
            "finalizing_table_conditions": [
              {
                "table": "`s1`",
                "original_table_condition": "((`s1`.`common_field` = 'abc') and (`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')))",
                "final_table_condition   ": "((`s1`.`common_field` = 'abc') and (`s1`.`key1` > 'z') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')))"
              }
            ]
          },
          {
           # 再稍稍的改进一下执行计划
            "refine_plan": [
              {
                "table": "`s1`",
                "pushed_index_condition": "(`s1`.`key1` > 'z')",
                "table_condition_attached": "((`s1`.`common_field` = 'abc') and (`s1`.`key2` < 1000000) and (`s1`.`key3` in ('aa','bb','cb')))"
              }
            ]
          }
        ]
      }
    },
    {
      "join_execution": { # execute阶段
        "select#": 1,
        "steps": [
        ]
      }
    }
  ]
}
# 因优化过程文本太多而丢弃的文本字节大小,值为0时表示并没有丢弃
MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0
# 权限字段
INSUFFICIENT_PRIVILEGES: 0
1 row in set (0.01 sec)

ERROR: 
No query specified

大家看到这个输出的第一感觉就是这文本也太多了点吧,其实这只是优化器执行过程中的一小部分,MySQL可能会在之后的版本中添加更多的优化过程信息。不过杂乱之中其实还是蛮有规律的,优化过程大致分为了三个阶段:

  • prepare阶段
  • optimize阶段
  • execute阶段

我们所说的基于成本的优化主要集中在optimize阶段,对于单表查询来说,我们主要关注optimize阶段的"rows_estimation"这个过程,这个过程深入分析了对单表查询的各种执行方案的成本;对于多表连接查询来说,我们更多需要关注"considered_execution_plans"这个过程,这个过程里会写明各种不同的连接方式所对应的成本。反正优化器最终会选择成本最低的那种方案来作为最终的执行计划,也就是我们使用EXPLAIN语句所展现出的那种方案。

如果有小伙伴对使用EXPLAIN语句展示出的对某个查询的执行计划很不理解,大家可以尝试使用optimizer trace功能来详细了解每一种执行方案对应的成本,相信这个功能能让大家更深入的了解MySQL查询优化器。

至此今天的学习就到此结束了,愿您成为坚不可摧的自己~~~

You can’t connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in your future.You have to trust in something - your gut, destiny, life, karma, whatever. This approach has never let me down, and it has made all the difference in my life

如果我的内容对你有帮助,请 点赞评论收藏,创作不易,大家的支持就是我坚持下去的动力

在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/liang921119/article/details/130865093