重磅!第一期·量子算法难题挑战赛总决赛获奖名单公布!

2023年5月27日,第一期·量子算法难题挑战赛总决赛在线上举行,5位开发者以优异的成绩进入总决赛,汇聚云端、隔空比拼,并在本次决赛中斩获佳绩。

第一期·量子算法难题挑战赛由HiQ量子计算软件团队、昇思MindSpore社区和华为云ModelArts平台联合举办,大赛旨在引领量子科技的发展,推动赛事成果转化,促进量子计算基础与应用研究,实现技术创新。在高性能计算机上进行量子化学模拟已成为研究材料的物理、化学性质的重要手段,大赛发布的赛题是“量子化学模拟——基态能求解的浅层线路设计”,要求选手基于Variational Quantum Eigensolver(VQE)方法,求解不同分子体系的基态能量,需选择基矢为sto-3g,通过设计线路或者改良优化方法,让VQE在更短的时间内达到化学精度,从而激发大家对量子化学模拟课题的思考和创新。

本次决赛邀请了北京师范大学化学学院李振东教授、中国科学技术大学化学物理系李震宇教授、HiQ量子计算软件与算法团队首席科学家翁文康教授和昇思MindSpore Quantum徐旭升研究员四位量子化学领域TOP专家担任评委。围绕参赛作品的性能/精度、创新性、代码质量及参赛选手的答辩表现等多个维度,四位评委老师以公正、严谨的态度进行评选,并对作品优化提升提出了中肯的建议。

决赛采用线上直播的方式开展,到底有多精彩?让我们一起来看看各位开发者的分享吧~

   获奖名单   

   项目分享  

冠军:杨金元 中国科学院大学 博士研究生

当前在含噪量子计算机上,利用变分量子求解器VQE并利用UCCSD拟设态模拟,最大制约就是受限的量子比特相干时间(量子门数)和受限的量子比特数。有限的量子比特数使得量子化学模拟中寻求量子比特数的降低十分重要。
受SymUCCSD启发,我发展了全新的编码算法QSBC (qubit-saving binary coding),利用对称性降低模拟所需量子比特数,并在LiH、BeH2等多个体系中成功应用,同时降低了模拟中量子比特数和量子比特门数,在相同精度下实现计算效率的大幅提升。新的编码算法QSBC开源到昇思MindSpore Quantum。

亚军:包振廷 电子科技大学 本科生在读

UCCSD是一种依据被截断到二次激发的分子二次量子化哈密顿量构造Ansatz的方法。哈密顿量中的每一项都会对应Ansatz中的一个含有一个参数的部分。实验中发现,这种Ansatz在求得分子基态能量后的最优化参数与哈密顿量相应系数高度相关,也就是说如果哈密顿量中某一项的系数绝对值很小,那么它对应的参数的绝对值在优化结束时也很可能小。这样便提供了一种依据哈密顿量各项系数来缩减参数量和线路深度,以及初始化参数的办法。类似地,该方法也可以移植到qUCC上。同时,将其他的部分小幅优化:

1、在实验中发现,实现Jordan-Wigner变换的函数占据了求解LiH的大部分时间,因此我们将这部分代码进行了多进程优化以提高成绩。
2、我们将哈密顿量H中系数绝对值过小的量去掉,这样不仅可以缩短Jordan-Wigner变换时间,还可以保证对精度的影响很小。

季军:雷鸥阳 上海大学 硕士研究生

量子化学计算的一种方法是应用量子变分求解器(Variational quantum eigensolver, VQE),结合幺正耦合团簇理论(Unitary coupled-cluster),以此实现某一分子的基态能波函数方法求解。

通常情况下分子的哈密顿量可由波恩-奥本海默近似而简化,得到只由电子动能、电子-电子势能和电子-核势能组成的结构,二次量子化过后整体哈密顿量可由产生和湮灭算符来表示,可以非常方便地表示激发态波函数。更进一步,一些分子轨道中的电子可能不参与激发过程,相应我们可以冻结这些轨道,只保留活跃的空间轨道,以此简化哈密顿量。

为实现基态波函数求解,使用VQE。一般流程中,首先需要制备一个分子的初始Hatree-Fock态,使用UCCSD等方法拟设一个含参试探波函数,由变分原理和经典优化算法不断更新变分参数以满足收敛条件。其中波函数拟设的步骤可以根据不同分子选择不同方法,如H6分子中激发情况较多,可根据积分系数大小适当取舍;LiH分子的活跃空间不大,可以根据幺正对耦合团簇(UpCCSD)理论进行构造。此外经典优化器中的参数也会影响得到结果的速度,可以实验性地尝试调整。

季军:白琪 浙江大学 博士研究生

关于VQE方法的优化,可以从两方面展开:

第一是设计更加适合分子的ansatz,从一个好的试探态出发。我在此方面的改进是根据不同的分子,选择不同的ansatz;针对特定的ansatz,去除不必要的量子门操作。

第二是改进优化方法,加快ansatz中参数的优化速度。我在此方面的改进有:设置优化器的停止条件,缩短程序运行时间;尝试新的优化方法。

想要完成此任务,首先要使得每一个分子都达到化学精度,在此基础上继续优化才能取得更好的结果。我对不同的分子尝试了不同的ansatz线路,包括QUCC与UCCSD线路。最终发现,有的分子只有在特定的线路下才可以实现化学精度。因此对于不同的分子,选择合适的ansatz线路是很有必要的。其次,在已有线路的基础上进行优化。参考仓库中已有代码方案,消除QUCC二阶中空轨道上的对易门,减少了量子门的数量。最后,尝试了不同的优化方法,对比优化结果。

陈拓之 中国海洋大学 硕士研究生

由于我们使用的是昇思MindSpore Quantum框架,很多流程都又相应的接口,并且响应速度非常快,比如对我们线路得出的结果计算期望,计算梯度等,所以我们可以把我们的重点放在其他自己优化的位置。在这次项目中,我把重点放在了分子哈密顿量的构建以及量子线路的设计。

对于框架其他部分的构建,在昇思MindSpore Quantum模块中有非常便捷的接口可供我们快速搭建VQE框架。例如,在simulator模块中,有一个名为get_expectation_with_grad的接口。该接口接受分子的哈密顿量和我们构建的量子线路作为输入,并返回一个grad_ops对象。我们可以将量子线路中使用的参数传递给 grad_ops,从而快速获取我们构建的量子线路对于分子哈密顿量的期望值以及每个参数的梯度值。我们无需再手动计算每个哈密顿量的Pauli字符串算符的期望值,并进行累加等一系列操作,因为接口内部会自动帮助 我们进行计算。因此,我们可以轻松地编写损失函数,并通过将其传递给优化器,实现对参数的优化。

恭喜以上获奖选手,同时也感谢所有开发者积极参与,HiQ量子计算期待与大家共赴下一次社区活动!

量子算法难题挑战赛代码:https://gitee.com/mindspore/mindquantum/tree/research/challenges/2022

大赛官网:

https://competition.huaweicloud.com/information/1000041745/introduction

活动回顾链接:

https://www.koushare.com/lives/room/047893

猜你喜欢

转载自blog.csdn.net/Kenji_Shinji/article/details/131069215
今日推荐