Retrofit+OkHttp 参数使用AES加密Demo

最近在做App代码安全方面的优化,特此记录一下。
我们现在App大多数都是基于Retrofit+OkHttp的网络请求框架,现在的需求是需要将请求的参数进行加密传输,下面图片中我们进行一个对比,一个是明文传输,一个是密文传输:

明文传输 密文传输

由于考虑到加密和解密的效率,我们现在选用的是AES对称加密。至于对称和非对称加密,可以参考以往的文章

1. 客户端修改

在未加密前,我们客户端与后端协商,是采用Json的形式传输字段请求的,比如一个登录接口,还有userNamepassword,那么就直接传输为:

{
    
    "password":"12345","userName":"tom"}

Http请求体可以看到如下内容:

POST /user/login/ HTTP/1.1
Content-Type: application/json; charset=UTF-8
Content-Length: 37
Host: 192.168.2.105:8080
Connection: Keep-Alive
Accept-Encoding: gzip
User-Agent: okhttp/4.9.3
Pragma: no-cache
Cache-Control: no-cache

{
    
    "password":"12345","userName":"tom"}

我们现在的目标,是需要将

{
    
    "password":"12345","userName":"tom"}

加密,加密成密文之后,再传输给后端服务器。

由于采用的是OKhttp网络请求框架,我们很容易会想到使用拦截器Interceptor来实现我们的需求。首先画图说明一下Interceptor的逻辑:

在这里插入图片描述
我们将要对需要出去的数据进行加密,然后对返回的数据进行解密。那么因此我们可以定义一下DataEncryptInterceptor逻辑,代码如下:

public class DataEncryptInterceptor implements Interceptor {
    
    

    @NonNull
    @Override
    public Response intercept(@NonNull Chain chain) throws IOException {
    
    
        Request request = chain.request();

        RequestBody oldBodyRequest = request.body();

        Buffer requestBuffer = new Buffer();
        oldBodyRequest.writeTo(requestBuffer);
        String oldBodyStr = requestBuffer.readUtf8();
        requestBuffer.close();

        Log.d("TAG", "the old body str is :" + oldBodyStr);

        //String randomKeyValue = "hello_" + System.currentTimeMillis() + "_world";
        String randomKeyValue = "zhangsanlisiwangwu";
        String newBodyStr = AESUtils.encrypt(oldBodyStr,randomKeyValue);
        if (TextUtils.isEmpty(newBodyStr)) newBodyStr = "";

        MediaType mediaType = MediaType.parse("text/plain;charset=utf-8");
        RequestBody newRequestBody = RequestBody.create(mediaType, newBodyStr);

        //构建新的request
        Request newRequest = request.newBuilder().header("Content-type", newRequestBody.contentType().toString())
                .header("Content-Length", String.valueOf(newRequestBody.contentLength()))
                .method(request.method(), newRequestBody)
                .header("key", randomKeyValue)
                .build();

        Response response = chain.proceed(newRequest);
        if (response.code() / 200 == 1) {
    
    
            ResponseBody oldResponseBody = response.body();

            String oldResponseBodyStr = oldResponseBody.string();

            String newResponseBodyStr = AESUtils.decrypt(oldResponseBodyStr,randomKeyValue);
            if (TextUtils.isEmpty(newResponseBodyStr)) newResponseBodyStr = "data decrypy error";
            
            ResponseBody responseBody = ResponseBody.create(mediaType, newResponseBodyStr);

            response = response.newBuilder().body(responseBody).build();
        }
		return response;
    }
}

整体的请求大概分为这8步,逻辑已经写的很清楚了。这里讲一下第二步,对旧的请求体进行AES加密。我们知道对AES加密时,需要提供密钥的,就像是开一把锁,需要有钥匙一样。这里我写的比较简单,使用的是固定的值,在正式的商业开发中,我们需要与后端进行协商,尽量每次传输使用动态的,破解难度比较的密钥。

写完之后,直接在OkHttpClient中添加即可:

OkHttpClient.Builder().
                    connectTimeout(8_000, TimeUnit.MILLISECONDS).
                    readTimeout(8_000,TimeUnit.MILLISECONDS).
                    addInterceptor(logger).
                    addInterceptor(DataEncryptInterceptor()).
                    build()

然后其它的地方几乎不需要动任何代码,直接就能实现数据的加密和解密了。

对于几个比较重要的类,现在直接把代码贴出来,到时候可以直接烤着拿去用:

AESUtils:

import java.io.Closeable;
import java.nio.charset.StandardCharsets;

import javax.crypto.Cipher;

import java.nio.charset.Charset;

import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;


public class AESUtils {
    
    


    /**
     * 加密算法
     */
    private static final String KEY_ALGORITHM = "AES";

    /**
     * AES 的 密钥长度,32 字节,范围:16 - 32 字节
     */
    public static final int SECRET_KEY_LENGTH = 32;

    /**
     * 字符编码
     */
    private static final Charset CHARSET_UTF8 = StandardCharsets.UTF_8;

    /**
     * 秘钥长度不足 16 个字节时,默认填充位数
     */
    private static final String DEFAULT_VALUE = "0";
    /**
     * 加解密算法/工作模式/填充方式
     */
    private static final String CIPHER_ALGORITHM = "AES/ECB/PKCS5Padding";
    /**
     * 加密密码,长度:16 或 32 个字符(随便定义)
     */
    private static final String secretKey = "zhangsanlisiwangwu";

    public static String getSecretKey() {
    
    
        return secretKey;
    }

    public static String encrypt(String data, String secretKey) {
    
    
        try {
    
    
            //创建密码器
            Cipher cipher = Cipher.getInstance(CIPHER_ALGORITHM);
            //初始化为加密密码器
            cipher.init(Cipher.ENCRYPT_MODE, getSecretKey(secretKey));
            byte[] encryptByte = cipher.doFinal(data.getBytes(CHARSET_UTF8));
            // 将加密以后的数据进行 Base64 编码
            return base64Encode(encryptByte);
        } catch (Exception e) {
    
    
            handleException(e);
        }
        return null;
    }



    /**
     * AES 加密
     *
     * @param data 待加密内容
     * @return 返回Base64转码后的加密数据
     */
    public static String encrypt(String data) {
    
    
        return encrypt(data,secretKey);
    }


    public static String decrypt(String base64Data, String secretKey) {
    
    
        try {
    
    
            byte[] data = base64Decode(base64Data);
            Cipher cipher = Cipher.getInstance(CIPHER_ALGORITHM);
            //设置为解密模式
            cipher.init(Cipher.DECRYPT_MODE, getSecretKey(secretKey));
            //执行解密操作
            byte[] result = cipher.doFinal(data);
            return new String(result, CHARSET_UTF8);
        } catch (Exception e) {
    
    
            handleException(e);
        }
        return null;
    }


    /**
     * AES 解密
     *
     * @param base64Data 加密的密文 Base64 字符串
     */
    public static String decrypt(String base64Data) {
    
    
        return decrypt(base64Data,secretKey);
    }

    /**
     * 使用密码获取 AES 秘钥
     */
    public static SecretKeySpec getSecretKey(String secretKey) {
    
    
        secretKey = toMakeKey(secretKey, SECRET_KEY_LENGTH, DEFAULT_VALUE);
        return new SecretKeySpec(secretKey.getBytes(CHARSET_UTF8), KEY_ALGORITHM);
    }

    /**
     * 如果 AES 的密钥小于 {@code length} 的长度,就对秘钥进行补位,保证秘钥安全。
     *
     * @param secretKey 密钥 key
     * @param length    密钥应有的长度
     * @param text      默认补的文本
     * @return 密钥
     */
    private static String toMakeKey(String secretKey, int length, String text) {
    
    
        // 获取密钥长度
        int strLen = secretKey.length();
        // 判断长度是否小于应有的长度
        if (strLen < length) {
    
    
            // 补全位数
            StringBuilder builder = new StringBuilder();
            // 将key添加至builder中
            builder.append(secretKey);
            // 遍历添加默认文本
            for (int i = 0; i < length - strLen; i++) {
    
    
                builder.append(text);
            }
            // 赋值
            secretKey = builder.toString();
        }
        return secretKey;
    }

    /**
     * 将 Base64 字符串 解码成 字节数组
     */
    public static byte[] base64Decode(String data) {
    
    
        return Base64.decode(data, Base64.NO_WRAP);
    }

    /**
     * 将 字节数组 转换成 Base64 编码
     */
    public static String base64Encode(byte[] data) {
    
    
        return Base64.encodeToString(data, Base64.NO_WRAP);
    }

    /**
     * 处理异常
     */
    private static void handleException(Exception e) {
    
    
        e.printStackTrace();
        System.out.println(e.getLocalizedMessage());
    }

    /**
     * 初始化 AES Cipher
     *
     * @param secretKey  密钥
     * @param cipherMode 加密模式
     * @return 密钥
     */
    private static Cipher initFileAESCipher(String secretKey, int cipherMode) {
    
    
        try {
    
    
            // 创建密钥规格
            SecretKeySpec secretKeySpec = getSecretKey(secretKey);
            // 获取密钥
            Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
            // 初始化
            cipher.init(cipherMode, secretKeySpec, new IvParameterSpec(new byte[cipher.getBlockSize()]));
            return cipher;
        } catch (Exception e) {
    
    
            handleException(e);
        }
        return null;
    }

    /**
     * 关闭流
     *
     * @param closeable 实现Closeable接口
     */
    private static void closeStream(Closeable closeable) {
    
    
        try {
    
    
            if (closeable != null) closeable.close();
        } catch (Exception e) {
    
    
            handleException(e);
        }
    }

}

其中还有一个Base64类逻辑,也算是比较简单:
Base64:


import java.io.UnsupportedEncodingException;
import java.io.UnsupportedEncodingException;

public class Base64 {
    
    
    /**
     * Default values for encoder/decoder flags.
     */
    public static final int DEFAULT = 0;

    /**
     * Encoder flag bit to omit the padding '=' characters at the end
     * of the output (if any).
     */
    public static final int NO_PADDING = 1;

    /**
     * Encoder flag bit to omit all line terminators (i.e., the output
     * will be on one long line).
     */
    public static final int NO_WRAP = 2;

    /**
     * Encoder flag bit to indicate lines should be terminated with a
     * CRLF pair instead of just an LF.  Has no effect if {@code
     * NO_WRAP} is specified as well.
     */
    public static final int CRLF = 4;

    /**
     * Encoder/decoder flag bit to indicate using the "URL and
     * filename safe" variant of Base64 (see RFC 3548 section 4) where
     * {@code -} and {@code _} are used in place of {@code +} and
     * {@code /}.
     */
    public static final int URL_SAFE = 8;


    public static final int NO_CLOSE = 16;

    //  --------------------------------------------------------
    //  shared code
    //  --------------------------------------------------------

    /* package */ static abstract class Coder {
    
    
        public byte[] output;
        public int op;

        /**
         * Encode/decode another block of input data.  this.output is
         * provided by the caller, and must be big enough to hold all
         * the coded data.  On exit, this.opwill be set to the length
         * of the coded data.
         *
         * @param finish true if this is the final call to process for
         *        this object.  Will finalize the coder state and
         *        include any final bytes in the output.
         *
         * @return true if the input so far is good; false if some
         *         error has been detected in the input stream..
         */
        public abstract boolean process(byte[] input, int offset, int len, boolean finish);

        /**
         * @return the maximum number of bytes a call to process()
         * could produce for the given number of input bytes.  This may
         * be an overestimate.
         */
        public abstract int maxOutputSize(int len);
    }

    //  --------------------------------------------------------
    //  decoding
    //  --------------------------------------------------------

    /**
     * Decode the Base64-encoded data in input and return the data in
     * a new byte array.
     *
     * <p>The padding '=' characters at the end are considered optional, but
     * if any are present, there must be the correct number of them.
     *
     * @param str    the input String to decode, which is converted to
     *               bytes using the default charset
     * @param flags  controls certain features of the decoded output.
     *               Pass {@code DEFAULT} to decode standard Base64.
     *
     * @throws IllegalArgumentException if the input contains
     * incorrect padding
     */
    public static byte[] decode(String str, int flags) {
    
    
        return decode(str.getBytes(), flags);
    }

    /**
     * Decode the Base64-encoded data in input and return the data in
     * a new byte array.
     *
     * <p>The padding '=' characters at the end are considered optional, but
     * if any are present, there must be the correct number of them.
     *
     * @param input the input array to decode
     * @param flags  controls certain features of the decoded output.
     *               Pass {@code DEFAULT} to decode standard Base64.
     *
     * @throws IllegalArgumentException if the input contains
     * incorrect padding
     */
    public static byte[] decode(byte[] input, int flags) {
    
    
        return decode(input, 0, input.length, flags);
    }

    /**
     * Decode the Base64-encoded data in input and return the data in
     * a new byte array.
     *
     * <p>The padding '=' characters at the end are considered optional, but
     * if any are present, there must be the correct number of them.
     *
     * @param input  the data to decode
     * @param offset the position within the input array at which to start
     * @param len    the number of bytes of input to decode
     * @param flags  controls certain features of the decoded output.
     *               Pass {@code DEFAULT} to decode standard Base64.
     *
     * @throws IllegalArgumentException if the input contains
     * incorrect padding
     */
    public static byte[] decode(byte[] input, int offset, int len, int flags) {
    
    
        // Allocate space for the most data the input could represent.
        // (It could contain less if it contains whitespace, etc.)
        Decoder decoder = new Decoder(flags, new byte[len*3/4]);

        if (!decoder.process(input, offset, len, true)) {
    
    
            throw new IllegalArgumentException("bad base-64");
        }

        // Maybe we got lucky and allocated exactly enough output space.
        if (decoder.op == decoder.output.length) {
    
    
            return decoder.output;
        }

        // Need to shorten the array, so allocate a new one of the
        // right size and copy.
        byte[] temp = new byte[decoder.op];
        System.arraycopy(decoder.output, 0, temp, 0, decoder.op);
        return temp;
    }

    /* package */ static class Decoder extends Coder {
    
    
        /**
         * Lookup table for turning bytes into their position in the
         * Base64 alphabet.
         */
        private static final int DECODE[] = {
    
    
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1, -1, 63,
            52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1, -1,
            -1,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,
            15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1,
            -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
            41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        };

        /**
         * Decode lookup table for the "web safe" variant (RFC 3548
         * sec. 4) where - and _ replace + and /.
         */
        private static final int DECODE_WEBSAFE[] = {
    
    
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1,
            52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1, -1,
            -1,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,
            15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, 63,
            -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
            41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        };

        /** Non-data values in the DECODE arrays. */
        private static final int SKIP = -1;
        private static final int EQUALS = -2;

        /**
         * States 0-3 are reading through the next input tuple.
         * State 4 is having read one '=' and expecting exactly
         * one more.
         * State 5 is expecting no more data or padding characters
         * in the input.
         * State 6 is the error state; an error has been detected
         * in the input and no future input can "fix" it.
         */
        private int state;   // state number (0 to 6)
        private int value;

        final private int[] alphabet;

        public Decoder(int flags, byte[] output) {
    
    
            this.output = output;

            alphabet = ((flags & URL_SAFE) == 0) ? DECODE : DECODE_WEBSAFE;
            state = 0;
            value = 0;
        }

        /**
         * @return an overestimate for the number of bytes {@code
         * len} bytes could decode to.
         */
        public int maxOutputSize(int len) {
    
    
            return len * 3/4 + 10;
        }

        /**
         * Decode another block of input data.
         *
         * @return true if the state machine is still healthy.  false if
         *         bad base-64 data has been detected in the input stream.
         */
        public boolean process(byte[] input, int offset, int len, boolean finish) {
    
    
            if (this.state == 6) return false;

            int p = offset;
            len += offset;

            // Using local variables makes the decoder about 12%
            // faster than if we manipulate the member variables in
            // the loop.  (Even alphabet makes a measurable
            // difference, which is somewhat surprising to me since
            // the member variable is final.)
            int state = this.state;
            int value = this.value;
            int op = 0;
            final byte[] output = this.output;
            final int[] alphabet = this.alphabet;

            while (p < len) {
    
    
                // Try the fast path:  we're starting a new tuple and the
                // next four bytes of the input stream are all data
                // bytes.  This corresponds to going through states
                // 0-1-2-3-0.  We expect to use this method for most of
                // the data.
                //
                // If any of the next four bytes of input are non-data
                // (whitespace, etc.), value will end up negative.  (All
                // the non-data values in decode are small negative
                // numbers, so shifting any of them up and or'ing them
                // together will result in a value with its top bit set.)
                //
                // You can remove this whole block and the output should
                // be the same, just slower.
                if (state == 0) {
    
    
                    while (p+4 <= len &&
                           (value = ((alphabet[input[p] & 0xff] << 18) |
                                     (alphabet[input[p+1] & 0xff] << 12) |
                                     (alphabet[input[p+2] & 0xff] << 6) |
                                     (alphabet[input[p+3] & 0xff]))) >= 0) {
    
    
                        output[op+2] = (byte) value;
                        output[op+1] = (byte) (value >> 8);
                        output[op] = (byte) (value >> 16);
                        op += 3;
                        p += 4;
                    }
                    if (p >= len) break;
                }

                // The fast path isn't available -- either we've read a
                // partial tuple, or the next four input bytes aren't all
                // data, or whatever.  Fall back to the slower state
                // machine implementation.

                int d = alphabet[input[p++] & 0xff];

                switch (state) {
    
    
                case 0:
                    if (d >= 0) {
    
    
                        value = d;
                        ++state;
                    } else if (d != SKIP) {
    
    
                        this.state = 6;
                        return false;
                    }
                    break;

                case 1:
                    if (d >= 0) {
    
    
                        value = (value << 6) | d;
                        ++state;
                    } else if (d != SKIP) {
    
    
                        this.state = 6;
                        return false;
                    }
                    break;

                case 2:
                    if (d >= 0) {
    
    
                        value = (value << 6) | d;
                        ++state;
                    } else if (d == EQUALS) {
    
    
                        // Emit the last (partial) output tuple;
                        // expect exactly one more padding character.
                        output[op++] = (byte) (value >> 4);
                        state = 4;
                    } else if (d != SKIP) {
    
    
                        this.state = 6;
                        return false;
                    }
                    break;

                case 3:
                    if (d >= 0) {
    
    
                        // Emit the output triple and return to state 0.
                        value = (value << 6) | d;
                        output[op+2] = (byte) value;
                        output[op+1] = (byte) (value >> 8);
                        output[op] = (byte) (value >> 16);
                        op += 3;
                        state = 0;
                    } else if (d == EQUALS) {
    
    
                        // Emit the last (partial) output tuple;
                        // expect no further data or padding characters.
                        output[op+1] = (byte) (value >> 2);
                        output[op] = (byte) (value >> 10);
                        op += 2;
                        state = 5;
                    } else if (d != SKIP) {
    
    
                        this.state = 6;
                        return false;
                    }
                    break;

                case 4:
                    if (d == EQUALS) {
    
    
                        ++state;
                    } else if (d != SKIP) {
    
    
                        this.state = 6;
                        return false;
                    }
                    break;

                case 5:
                    if (d != SKIP) {
    
    
                        this.state = 6;
                        return false;
                    }
                    break;
                }
            }

            if (!finish) {
    
    
                // We're out of input, but a future call could provide
                // more.
                this.state = state;
                this.value = value;
                this.op = op;
                return true;
            }

            // Done reading input.  Now figure out where we are left in
            // the state machine and finish up.

            switch (state) {
    
    
            case 0:
                // Output length is a multiple of three.  Fine.
                break;
            case 1:
                // Read one extra input byte, which isn't enough to
                // make another output byte.  Illegal.
                this.state = 6;
                return false;
            case 2:
                // Read two extra input bytes, enough to emit 1 more
                // output byte.  Fine.
                output[op++] = (byte) (value >> 4);
                break;
            case 3:
                // Read three extra input bytes, enough to emit 2 more
                // output bytes.  Fine.
                output[op++] = (byte) (value >> 10);
                output[op++] = (byte) (value >> 2);
                break;
            case 4:
                // Read one padding '=' when we expected 2.  Illegal.
                this.state = 6;
                return false;
            case 5:
                // Read all the padding '='s we expected and no more.
                // Fine.
                break;
            }

            this.state = state;
            this.op = op;
            return true;
        }
    }

    //  --------------------------------------------------------
    //  encoding
    //  --------------------------------------------------------

    /**
     * Base64-encode the given data and return a newly allocated
     * String with the result.
     *
     * @param input  the data to encode
     * @param flags  controls certain features of the encoded output.
     *               Passing {@code DEFAULT} results in output that
     *               adheres to RFC 2045.
     */
    public static String encodeToString(byte[] input, int flags) {
    
    
        try {
    
    
            return new String(encode(input, flags), "US-ASCII");
        } catch (UnsupportedEncodingException e) {
    
    
            // US-ASCII is guaranteed to be available.
            throw new AssertionError(e);
        }
    }

    /**
     * Base64-encode the given data and return a newly allocated
     * String with the result.
     *
     * @param input  the data to encode
     * @param offset the position within the input array at which to
     *               start
     * @param len    the number of bytes of input to encode
     * @param flags  controls certain features of the encoded output.
     *               Passing {@code DEFAULT} results in output that
     *               adheres to RFC 2045.
     */
    public static String encodeToString(byte[] input, int offset, int len, int flags) {
    
    
        try {
    
    
            return new String(encode(input, offset, len, flags), "US-ASCII");
        } catch (UnsupportedEncodingException e) {
    
    
            // US-ASCII is guaranteed to be available.
            throw new AssertionError(e);
        }
    }

    /**
     * Base64-encode the given data and return a newly allocated
     * byte[] with the result.
     *
     * @param input  the data to encode
     * @param flags  controls certain features of the encoded output.
     *               Passing {@code DEFAULT} results in output that
     *               adheres to RFC 2045.
     */
    public static byte[] encode(byte[] input, int flags) {
    
    
        return encode(input, 0, input.length, flags);
    }

    /**
     * Base64-encode the given data and return a newly allocated
     * byte[] with the result.
     *
     * @param input  the data to encode
     * @param offset the position within the input array at which to
     *               start
     * @param len    the number of bytes of input to encode
     * @param flags  controls certain features of the encoded output.
     *               Passing {@code DEFAULT} results in output that
     *               adheres to RFC 2045.
     */
    public static byte[] encode(byte[] input, int offset, int len, int flags) {
    
    
        Encoder encoder = new Encoder(flags, null);

        // Compute the exact length of the array we will produce.
        int output_len = len / 3 * 4;

        // Account for the tail of the data and the padding bytes, if any.
        if (encoder.do_padding) {
    
    
            if (len % 3 > 0) {
    
    
                output_len += 4;
            }
        } else {
    
    
            switch (len % 3) {
    
    
                case 0: break;
                case 1: output_len += 2; break;
                case 2: output_len += 3; break;
            }
        }

        // Account for the newlines, if any.
        if (encoder.do_newline && len > 0) {
    
    
            output_len += (((len-1) / (3 * Encoder.LINE_GROUPS)) + 1) *
                (encoder.do_cr ? 2 : 1);
        }

        encoder.output = new byte[output_len];
        encoder.process(input, offset, len, true);

        assert encoder.op == output_len;

        return encoder.output;
    }

    /* package */ static class Encoder extends Coder {
    
    
        /**
         * Emit a new line every this many output tuples.  Corresponds to
         * a 76-character line length (the maximum allowable according to
         * <a href="http://www.ietf.org/rfc/rfc2045.txt">RFC 2045</a>).
         */
        public static final int LINE_GROUPS = 19;

        /**
         * Lookup table for turning Base64 alphabet positions (6 bits)
         * into output bytes.
         */
        private static final byte ENCODE[] = {
    
    
            'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
            'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
            'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
            'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '/',
        };

        /**
         * Lookup table for turning Base64 alphabet positions (6 bits)
         * into output bytes.
         */
        private static final byte ENCODE_WEBSAFE[] = {
    
    
            'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
            'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
            'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
            'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '-', '_',
        };

        final private byte[] tail;
        /* package */ int tailLen;
        private int count;

        final public boolean do_padding;
        final public boolean do_newline;
        final public boolean do_cr;
        final private byte[] alphabet;

        public Encoder(int flags, byte[] output) {
    
    
            this.output = output;

            do_padding = (flags & NO_PADDING) == 0;
            do_newline = (flags & NO_WRAP) == 0;
            do_cr = (flags & CRLF) != 0;
            alphabet = ((flags & URL_SAFE) == 0) ? ENCODE : ENCODE_WEBSAFE;

            tail = new byte[2];
            tailLen = 0;

            count = do_newline ? LINE_GROUPS : -1;
        }

        /**
         * @return an overestimate for the number of bytes {@code
         * len} bytes could encode to.
         */
        public int maxOutputSize(int len) {
    
    
            return len * 8/5 + 10;
        }

        public boolean process(byte[] input, int offset, int len, boolean finish) {
    
    
            // Using local variables makes the encoder about 9% faster.
            final byte[] alphabet = this.alphabet;
            final byte[] output = this.output;
            int op = 0;
            int count = this.count;

            int p = offset;
            len += offset;
            int v = -1;

            // First we need to concatenate the tail of the previous call
            // with any input bytes available now and see if we can empty
            // the tail.

            switch (tailLen) {
    
    
                case 0:
                    // There was no tail.
                    break;

                case 1:
                    if (p+2 <= len) {
    
    
                        // A 1-byte tail with at least 2 bytes of
                        // input available now.
                        v = ((tail[0] & 0xff) << 16) |
                            ((input[p++] & 0xff) << 8) |
                            (input[p++] & 0xff);
                        tailLen = 0;
                    };
                    break;

                case 2:
                    if (p+1 <= len) {
    
    
                        // A 2-byte tail with at least 1 byte of input.
                        v = ((tail[0] & 0xff) << 16) |
                            ((tail[1] & 0xff) << 8) |
                            (input[p++] & 0xff);
                        tailLen = 0;
                    }
                    break;
            }

            if (v != -1) {
    
    
                output[op++] = alphabet[(v >> 18) & 0x3f];
                output[op++] = alphabet[(v >> 12) & 0x3f];
                output[op++] = alphabet[(v >> 6) & 0x3f];
                output[op++] = alphabet[v & 0x3f];
                if (--count == 0) {
    
    
                    if (do_cr) output[op++] = '\r';
                    output[op++] = '\n';
                    count = LINE_GROUPS;
                }
            }

            // At this point either there is no tail, or there are fewer
            // than 3 bytes of input available.

            // The main loop, turning 3 input bytes into 4 output bytes on
            // each iteration.
            while (p+3 <= len) {
    
    
                v = ((input[p] & 0xff) << 16) |
                    ((input[p+1] & 0xff) << 8) |
                    (input[p+2] & 0xff);
                output[op] = alphabet[(v >> 18) & 0x3f];
                output[op+1] = alphabet[(v >> 12) & 0x3f];
                output[op+2] = alphabet[(v >> 6) & 0x3f];
                output[op+3] = alphabet[v & 0x3f];
                p += 3;
                op += 4;
                if (--count == 0) {
    
    
                    if (do_cr) output[op++] = '\r';
                    output[op++] = '\n';
                    count = LINE_GROUPS;
                }
            }

            if (finish) {
    
    
                // Finish up the tail of the input.  Note that we need to
                // consume any bytes in tail before any bytes
                // remaining in input; there should be at most two bytes
                // total.

                if (p-tailLen == len-1) {
    
    
                    int t = 0;
                    v = ((tailLen > 0 ? tail[t++] : input[p++]) & 0xff) << 4;
                    tailLen -= t;
                    output[op++] = alphabet[(v >> 6) & 0x3f];
                    output[op++] = alphabet[v & 0x3f];
                    if (do_padding) {
    
    
                        output[op++] = '=';
                        output[op++] = '=';
                    }
                    if (do_newline) {
    
    
                        if (do_cr) output[op++] = '\r';
                        output[op++] = '\n';
                    }
                } else if (p-tailLen == len-2) {
    
    
                    int t = 0;
                    v = (((tailLen > 1 ? tail[t++] : input[p++]) & 0xff) << 10) |
                        (((tailLen > 0 ? tail[t++] : input[p++]) & 0xff) << 2);
                    tailLen -= t;
                    output[op++] = alphabet[(v >> 12) & 0x3f];
                    output[op++] = alphabet[(v >> 6) & 0x3f];
                    output[op++] = alphabet[v & 0x3f];
                    if (do_padding) {
    
    
                        output[op++] = '=';
                    }
                    if (do_newline) {
    
    
                        if (do_cr) output[op++] = '\r';
                        output[op++] = '\n';
                    }
                } else if (do_newline && op > 0 && count != LINE_GROUPS) {
    
    
                    if (do_cr) output[op++] = '\r';
                    output[op++] = '\n';
                }

                assert tailLen == 0;
                assert p == len;
            } else {
    
    
                // Save the leftovers in tail to be consumed on the next
                // call to encodeInternal.

                if (p == len-1) {
    
    
                    tail[tailLen++] = input[p];
                } else if (p == len-2) {
    
    
                    tail[tailLen++] = input[p];
                    tail[tailLen++] = input[p+1];
                }
            }

            this.op = op;
            this.count = count;

            return true;
        }
    }

    private Base64() {
    
     }   // don't instantiate
}

解析代码也很好用:

public static void main(String[] args) throws Exception {
    
    

        String content = "hello world";
        String key = "_hello__world___";

        String encrypt = encrypt(content,key);

        System.out.println(encrypt);
        System.out.println(decrypt(encrypt, key));

    }

结果为:
在这里插入图片描述

加密直接使用encrypt(content,key),解密直接使用decrypt(encrypt, key), 但是需要提醒的是,加密和解密必须是同一个key,就像你开一把锁,只能是同一把锁打开,然后同一把锁锁上。

后端加密解密

这个需要看你后端的技术栈,我这边是SpringBoot实现的。为了优雅的实现加密和解密的逻辑,肯定也会有很好的处理方式,我这里处理就比较简单了,可以看一下这个例子:

     @RequestMapping(value = "/user/login/", method = RequestMethod.POST)
     public String userLogin(@RequestBody String content) {
    
    
        System.out.println("find the encrypt data:" + content);

        String sourceData = AESUtils.decrypt(content);
        System.out.println("find the source data :" + sourceData);

        //TODO 处理自己的逻辑
        UserInfo userInfo = new UserInfo();
        userInfo.userId = 12;
        userInfo.name = "Tom";
        // 将获取到的业务数据
        String returnData = JsonUtils.toJson(ResponseBean.createSuccessBean(userInfo));


        // 加密业务逻辑数据
        String returnEncryptData = AESUtils.encrypt(returnData);
        System.out.println("return source data : " + returnData);
        System.out.println("return encrypt data : " + returnEncryptData);

        //返回
        return returnEncryptData;

    }

我们可以看一下请求和输出:
在这里插入图片描述
然后我们可以看一下整个App数据数据流逻辑:

在这里插入图片描述
然后就是服务器数据流处理逻辑:
在这里插入图片描述
基本流程就说这么多了吧。

猜你喜欢

转载自blog.csdn.net/u013762572/article/details/124908642