各种电容器的优缺点


1、电容比较

电容器以生产材料可划分为陶瓷电容器、钽电解电容器、铝电解电容器等。

种类

优点

缺点

应用

 

 

陶瓷电容

温度补偿型

具有良好的高频特性,较低的ESR及残余电感ESL

容量变化率小

滤波、高频电容的耦合,与电感结合使用时,线圈的电感会随着温度的上升而增加,这时则可以利用负温度系数电容器来进行修正

高诱电型

介电常数较高,静电容量较高

因温度变化的静电容量较大

电源电路去耦或平滑

钽电容

高性价比,高容量

较高的ESR,有极性,无法耐受约1V以上的反向偏置电压,较高的漏电流(可能为数十uA)

耐压一般低于50V或更低,电容为500uF或更低,比铝电容贵

低频滤波

铝电容

高性价比,高容量,耐压高

低频滤波

 

2、 实际电容及其寄生效应

 图1所示为实际电容的模型。电阻RP代表绝缘电阻或泄漏,与标称电容(C)并联。第二个电阻RS(等效串联电阻或ESR)与电容串联, 代表电容引脚和电容板的电阻。

 

 电感L(等效串联电感或ESL)代表引脚和电容板的电感。最后,电阻RDA和电容CDA一起构成称为电介质吸收(DA)现象的简化模型。在采样保持放大器(SHA)之类精密应用中使用电容时,DA可造成误差。但在去耦应用中,电容的DA不重要,予以忽略。

 

 图2显示了不同类型的100 μF电容的频率响应。理论上,理想电容的阻抗随着频率提高而单调降低。实际操作中,ESR使阻抗曲线变得平坦。随着频率不断升高,阻抗由于电容的ESL而开始上升。“膝部”的位置和宽度将随着电容结构、电介质和电容值而变化。因此,在去耦应用中,常常可以看到较大值电容与较小值电容并联。较小值电容通常具有较低ESL,在较高频率时仍然像一个电容。电容并联组合覆盖的频率范围比组合中任何一个电容的频率范围都要宽。

 

 

 电容自谐振频率就是电容电抗(1/ωC)等于ESL电抗(ωESL)时的频率。对这一谐振频率等式求解得到下式:

 

 所有电容的阻抗曲线都与图示的大致形状类似。虽然实际曲线图有所不同,但大致形状相同。最小阻抗由ESR决定,高频区域由ESL决定,而后者在很大程度上受封装样式影

NP0(也称为COG)型使用介电常数较低的配方,具有标称零TC和低电压系数(不同于较不稳定的高K型)。NP0型的可用值限于0.1 μF或更低,0.01 μF是更实用的上限值。

陶瓷或多层陶瓷(MLCC)具有尺寸紧凑和低损耗特性,通常是数MHz 以上的首选电容材料。不过,陶瓷电介质特性相差很大。对于电源去耦应用,一些类型优于其他类型。采用X7R的高K电介质配方时,陶瓷电介质电容的值最高可达数μF。Z5U和Y5V型的额定电压最高可达200 V。X7R型在直流偏置电压下的电容变化小于Z5U和Y5V型,因此是较佳选择。

多层陶瓷(MLCC)表面贴装电容的极低电感设计可提供近乎最优的RF旁路,因此越来越频繁地用于10 MHz或更高频率下的旁路和滤波。更小的陶瓷芯片电容工作频率范围可达1 GHz。对于高频应用中的这些及其他电容,通过选择自谐振频率高于最高目标频率的电容,可确保有用值符合需要。


猜你喜欢

转载自blog.csdn.net/sinat_37378576/article/details/78148233