[HNOI2008]玩具装箱

题目:洛谷P3195、BZOJ1010。

题目大意:
$$dp[i]=\min\limits _{j<i}\{dp[j]+(i-j-1+\sum\limits _{k=j+1} ^i c_k -L)^2\}$$
求\(dp[n]\)
解题思路:
记\(a_i=\sum\limits _{j=1}^i c_j \),
则\(dp[i]=\min\limits _{j<i}\{dp[j]+(i-j-1+a_i -a_j c_k -L)^2\}\)
令\(b_i=a_i+1\),\(d_i=b_i-L-1\),则\(dp[i]=\min\limits _{j<i}\{dp[j]+(d_i-b_j)^2\}\)
若状态\(j\)比\(k\)优秀,则\(dp[j]+(d_i-b_j)^2 <dp[k]+(d_i-b_k)^2\)
化简得\(dp[j]+b_j ^2 -dp[k]-b_k^2 <(2b_j -2b_k)d_i\)
令\(x_i=2b_i\),\(y_i=dp[i]+b_i\),则\( y_j-y_k<(x_j-x_k)d_i \)
考虑\(j<k<l\),有\(x_j<x_k<x_l\)
若\(k\)有用,则存在\(d_i\)使得\(y_k-y_l\leqslant (x_k-x_l)d_i ,y_k-y_j<(x_k-x_j)d_i\)
于是\(\frac{y_k-y_j}{x_k-x_j}<d_i\leqslant \frac{y_l-y_k}{x_l-x_k}\)
然后单调队列维护斜率即可。
(以上抄自lyx_cjz)

C++ Code:

//f[i]=min{f[j]+(i-j-1+s[i]-s[j-1]-L)^2}
//b[i]=s[i]+i,d[i]=b[i]-L-1
#include<bits/stdc++.h>
#define LoveLive long long
#define N 50005
int n,l;
LoveLive f[N],s[N];
int q[N],c[N];
inline LoveLive b(const int i){return s[i]+i;}
inline LoveLive d(const int i){return s[i]+i-l-1;}
inline LoveLive sqr(const LoveLive t){return t*t;}
inline LoveLive x(const int i){return b(i)<<1;}
inline LoveLive y(const int i){return f[i]+sqr(b(i));}
inline double slope(const int a,const int b){
	return 1.*(y(a)-y(b))/(x(a)-x(b));
}
int main(){
	scanf("%d%d",&n,&l);
	s[0]=0;
	for(int i=1;i<=n;++i){
		scanf("%d",&c[i]);
		s[i]=s[i-1]+c[i];
	}
	q[0]=0;f[0]=0;
	int l=0,r=0;
	for(int i=1;i<=n;++i){
		while(l<r&&slope(q[l],q[l+1])<=d(i))++l;
		f[i]=f[q[l]]+sqr(b(q[l])-d(i));
		while(l<r&&slope(q[r-1],q[r])>=slope(q[r],i))--r;
		q[++r]=i;
	}
	printf("%lld\n",f[n]);
	return 0;
}

猜你喜欢

转载自www.cnblogs.com/Mrsrz/p/9157353.html