win32下串口读写设置操作

转载来自:
https://blog.csdn.net/dahan_wangtao/article/details/1621212

在工业控制中,工控机(一般都基于Windows平台)经常需要与智能仪表通过串口进行通信。
串口通信方便易行,应用广泛。
一般情况下,工控机和各智能仪表通过RS485总线进行通信。
RS485的通信方式是半双工的,只能由作为主节点的工控PC机依次轮询网络上的各智能控制单元子节点。
每次通信都是由PC机通过串口向智能控制单元发布命令,智能控制单元在接收到正确的命令后作出应答。

在Win32下,可以使用两种编程方式实现串口通信,
其一是使用ActiveX控件,这种方法程序简单,但欠灵活。
其二是调用Windows的API函数,这种方法可以清楚地掌握串口通信的机制,并且自由灵活。
本文我们只介绍API串口通信部分。

串口的操作可以有两种操作方式:同步操作方式和重叠操作方式(又称为异步操作方式)。
同步操作时,API函数会阻塞直到操作完成以后才能返回
(在多线程方式中,虽然不会阻塞主线程,但是仍然会阻塞监听线程);
而重叠操作方式,API函数会立即返回,操作在后台进行,避免线程的阻塞。
无论那种操作方式,一般都通过四个步骤来完成:
(1) 打开串口
(2) 配置串口
(3) 读写串口
(4) 关闭串口

(1) 打开串口

同步I/O方式打开串口的示例代码:

    HANDLE hCom;  //全局变量,串口句柄
    hCom=CreateFile("COM1",//COM1口
        GENERIC_READ|GENERIC_WRITE, //允许读和写
        0, //独占方式
        NULL,
        OPEN_EXISTING, //打开而不是创建
        0, //同步方式
        NULL);
    if(hCom==(HANDLE)-1)
    {
        AfxMessageBox("打开COM失败!");
        return FALSE;
    }
    return TRUE;

重叠I/O打开串口的示例代码:

    HANDLE hCom;  //全局变量,串口句柄
    hCom =CreateFile("COM1",  //COM1口
             GENERIC_READ|GENERIC_WRITE, //允许读和写
             0,  //独占方式
             NULL,
             OPEN_EXISTING,  //打开而不是创建
             FILE_ATTRIBUTE_NORMAL|FILE_FLAG_OVERLAPPED, //重叠方式
             NULL);
    if(hCom ==INVALID_HANDLE_VALUE)
    {
        AfxMessageBox("打开COM失败!");
        return FALSE;
    }
       return TRUE;

(2)、配置串口

在打开通讯设备句柄后,常常需要对串口进行一些初始化配置工作。这需要通过一个DCB结构来进行。DCB结构包含了诸如波特率、数据位数、奇偶校验和停止位数等信息。在查询或配置串口的属性时,都要用DCB结构来作为缓冲区。
一般用CreateFile打开串口后,可以调用GetCommState函数来获取串口的初始配置。要修改串口的配置,应该先修改DCB结构,然后再调用SetCommState函数设置串口。
除了在BCD中的设置外,程序一般还需要设置I/O缓冲区的大小和超时。Windows用I/O缓冲区来暂存串口输入和输出的数据。如果通信的速率较高,则应该设置较大的缓冲区。调用SetupComm函数可以设置串行口的输入和输出缓冲区的大小。

BOOL SetupComm(

    HANDLE hFile,   // 通信设备的句柄 
    DWORD dwInQueue,    // 输入缓冲区的大小(字节数) 
    DWORD dwOutQueue    // 输出缓冲区的大小(字节数)
   );

在用ReadFile和WriteFile读写串行口时,需要考虑超时问题。超时的作用是在指定的时间内没有读入或发送指定数量的字符,ReadFile或WriteFile的操作仍然会结束。
要查询当前的超时设置应调用GetCommTimeouts函数,该函数会填充一个COMMTIMEOUTS结构。调用SetCommTimeouts可以用某一个COMMTIMEOUTS结构的内容来设置超时。
读写串口的超时有两种:间隔超时和总超时。间隔超时是指在接收时两个字符之间的最大时延。总超时是指读写操作总共花费的最大时间。写操作只支持总超时,而读操作两种超时均支持。用COMMTIMEOUTS结构可以规定读写操作的超时。
COMMTIMEOUTS结构的定义为:

typedef struct _COMMTIMEOUTS {   
    DWORD ReadIntervalTimeout; //读间隔超时
    DWORD ReadTotalTimeoutMultiplier; //读时间系数
    DWORD ReadTotalTimeoutConstant; //读时间常量
    DWORD WriteTotalTimeoutMultiplier; // 写时间系数
    DWORD WriteTotalTimeoutConstant; //写时间常量
} COMMTIMEOUTS,*LPCOMMTIMEOUTS;

COMMTIMEOUTS结构的成员都以毫秒为单位。总超时的计算公式是:
总超时=时间系数×要求读/写的字符数+时间常量
例如,要读入10个字符,那么读操作的总超时的计算公式为:
读总超时=ReadTotalTimeoutMultiplier×10+ReadTotalTimeoutConstant
可以看出:间隔超时和总超时的设置是不相关的,这可以方便通信程序灵活地设置各种超时。

如果所有写超时参数均为0,那么就不使用写超时。如果ReadIntervalTimeout为0,那么就不使用读间隔超时。如果ReadTotalTimeoutMultiplier 和 ReadTotalTimeoutConstant 都为0,则不使用读总超时。如果读间隔超时被设置成MAXDWORD并且读时间系数和读时间常量都为0,那么在读一次输入缓冲区的内容后读操作就立即返回,而不管是否读入了要求的字符。
  在用重叠方式读写串口时,虽然ReadFile和WriteFile在完成操作以前就可能返回,但超时仍然是起作用的。在这种情况下,超时规定的是操作的完成时间,而不是ReadFile和WriteFile的返回时间。
配置串口的示例代码:

    SetupComm(hCom,1024,1024); //输入缓冲区和输出缓冲区的大小都是1024

    COMMTIMEOUTS TimeOuts;
    //设定读超时
    TimeOuts.ReadIntervalTimeout=1000;
    TimeOuts.ReadTotalTimeoutMultiplier=500;
    TimeOuts.ReadTotalTimeoutConstant=5000;
    //设定写超时
    TimeOuts.WriteTotalTimeoutMultiplier=500;
    TimeOuts.WriteTotalTimeoutConstant=2000;
    SetCommTimeouts(hCom,&TimeOuts); //设置超时

    DCB dcb;
    GetCommState(hCom,&dcb);
    dcb.BaudRate=9600; //波特率为9600
    dcb.ByteSize=8; //每个字节有8位
    dcb.Parity=NOPARITY; //无奇偶校验位
    dcb.StopBits=TWOSTOPBITS; //两个停止位
    SetCommState(hCom,&dcb);

    PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);

在读写串口之前,还要用PurgeComm()函数清空缓冲区,该函数原型:

BOOL PurgeComm(

    HANDLE hFile,   //串口句柄
    DWORD dwFlags   // 需要完成的操作
   );   

参数dwFlags指定要完成的操作,可以是下列值的组合:

PURGE_TXABORT     中断所有写操作并立即返回,即使写操作还没有完成。
PURGE_RXABORT     中断所有读操作并立即返回,即使读操作还没有完成。
PURGE_TXCLEAR     清除输出缓冲区
PURGE_RXCLEAR     清除输入缓冲区

(3)、读写串口

在用ReadFile和WriteFile读写串口时,既可以同步执行,也可以重叠执行。在同步执行时,函数直到操作完成后才返回。这意味着同步执行时线程会被阻塞,从而导致效率下降。在重叠执行时,即使操作还未完成,这两个函数也会立即返回,费时的I/O操作在后台进行。
  ReadFile和WriteFile函数是同步还是异步由CreateFile函数决定,如果在调用CreateFile创建句柄时指定了FILE_FLAG_OVERLAPPED标志,那么调用ReadFile和WriteFile对该句柄进行的操作就应该是重叠的;如果未指定重叠标志,则读写操作应该是同步的。ReadFile和WriteFile函数的同步或者异步应该和CreateFile函数相一致。
  ReadFile函数只要在串口输入缓冲区中读入指定数量的字符,就算完成操作。而WriteFile函数不但要把指定数量的字符拷入到输出缓冲区,而且要等这些字符从串行口送出去后才算完成操作。
  如果操作成功,这两个函数都返回TRUE。需要注意的是,当ReadFile和WriteFile返回FALSE时,不一定就是操作失败,线程应该调用GetLastError函数分析返回的结果。例如,在重叠操作时如果操作还未完成函数就返回,那么函数就返回FALSE,而且GetLastError函数返回ERROR_IO_PENDING。这说明重叠操作还未完成。
同步方式读写串口比较简单,下面先例举同步方式读写串口的代码:

//同步读串口
char str[100];
DWORD wCount;//读取的字节数
BOOL bReadStat;
bReadStat=ReadFile(hCom,str,100,&wCount,NULL);
if(!bReadStat)
{
    AfxMessageBox("读串口失败!");
    return FALSE;
}
return TRUE;

//同步写串口

    char lpOutBuffer[100];
    DWORD dwBytesWrite=100;
    COMSTAT ComStat;
    DWORD dwErrorFlags;
    BOOL bWriteStat;
    ClearCommError(hCom,&dwErrorFlags,&ComStat);
    bWriteStat=WriteFile(hCom,lpOutBuffer,dwBytesWrite,& dwBytesWrite,NULL);
    if(!bWriteStat)
    {
        AfxMessageBox("写串口失败!");
    }
    PurgeComm(hCom, PURGE_TXABORT|
        PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);

在重叠操作时,操作还未完成函数就返回。
  重叠I/O非常灵活,它也可以实现阻塞(例如我们可以设置一定要读取到一个数据才能进行到下一步操作)。有两种方法可以等待操作完成:一种方法是用象WaitForSingleObject这样的等待函数来等待OVERLAPPED结构的hEvent成员;另一种方法是调用GetOverlappedResult函数等待,后面将演示说明。
下面我们先简单说一下OVERLAPPED结构和GetOverlappedResult函数:
OVERLAPPED结构
OVERLAPPED结构包含了重叠I/O的一些信息,定义如下:

typedef struct _OVERLAPPED { // o  
    DWORD  Internal; 
    DWORD  InternalHigh; 
    DWORD  Offset; 
    DWORD  OffsetHigh; 
    HANDLE hEvent; 
} OVERLAPPED;

  在使用ReadFile和WriteFile重叠操作时,线程需要创建OVERLAPPED结构以供这两个函数使用。线程通过OVERLAPPED结构获得当前的操作状态,该结构最重要的成员是hEvent。hEvent是读写事件。当串口使用异步通讯时,函数返回时操作可能还没有完成,程序可以通过检查该事件得知是否读写完毕。
  当调用ReadFile, WriteFile 函数的时候,该成员会自动被置为无信号状态;当重叠操作完成后,该成员变量会自动被置为有信号状态。
  GetOverlappedResult 函数返回重叠操作的结果,用来判断异步操作是否完成,它是通过判断OVERLAPPED结构中的hEvent是否被置位来实现的。
  异步读串口的示例代码:
  

char lpInBuffer[1024];
DWORD dwBytesRead=1024;
COMSTAT ComStat;
DWORD dwErrorFlags;
OVERLAPPED m_osRead;
memset(&m_osRead,0,sizeof(OVERLAPPED));
m_osRead.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);

ClearCommError(hCom,&dwErrorFlags,&ComStat);
dwBytesRead=min(dwBytesRead,(DWORD)ComStat.cbInQue);
if(!dwBytesRead)
return FALSE;
BOOL bReadStatus;
bReadStatus=ReadFile(hCom,lpInBuffer,
                     dwBytesRead,&dwBytesRead,&m_osRead);

if(!bReadStatus) //如果ReadFile函数返回FALSE
{
    if(GetLastError()==ERROR_IO_PENDING)
    //GetLastError()函数返回ERROR_IO_PENDING,表明串口正在进行读操作    
    {
        WaitForSingleObject(m_osRead.hEvent,2000);
        //使用WaitForSingleObject函数等待,直到读操作完成或延时已达到2秒钟
        //当串口读操作进行完毕后,m_osRead的hEvent事件会变为有信号
        PurgeComm(hCom, PURGE_TXABORT|
            PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
        return dwBytesRead;
    }
    return 0;
}
PurgeComm(hCom, PURGE_TXABORT|
          PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
return dwBytesRead;

 对以上代码再作简要说明:在使用ReadFile 函数进行读操作前,应先使用ClearCommError函数清除错误。ClearCommError函数的原型如下:

 BOOL ClearCommError(

    HANDLE hFile,   // 串口句柄
    LPDWORD lpErrors,   // 指向接收错误码的变量
    LPCOMSTAT lpStat    // 指向通讯状态缓冲区
   );

20180607
未完待续

猜你喜欢

转载自blog.csdn.net/wowocpp/article/details/80610385