OpenGL渲染STL三角网格模型

Opengl绘制STL模型

实现效果

首先先看看使用可编程管线实现的STL模型的渲染效果,网格模型的数量大约在100来万,实现的效果还是挺鲁棒。
请添加图片描述

STL模型文件

关于STL的文件格式主要包括以下两种:

  • ASCII格式
  • 二进制格式

实现代码

filesystem.h文件

#ifndef FILESYSTEM_H
#define FILESYSTEM_H

#include <string>
#include <cstdlib>
#include "root_directory.h" // This is a configuration file generated by CMake.

class FileSystem
{
    
    
private:
  typedef std::string (*Builder) (const std::string& path);

public:
  static std::string getPath(const std::string& path)
  {
    
    
    static std::string(*pathBuilder)(std::string const &) = getPathBuilder();
    return (*pathBuilder)(path);
  }

private:
  static std::string const & getRoot()
  {
    
    
    static char const * envRoot = getenv("LOGL_ROOT_PATH");
    static char const * givenRoot = (envRoot != nullptr ? envRoot : logl_root);
    static std::string root = (givenRoot != nullptr ? givenRoot : "");
    return root;
  }

  //static std::string(*foo (std::string const &)) getPathBuilder()
  static Builder getPathBuilder()
  {
    
    
    if (getRoot() != "")
      return &FileSystem::getPathRelativeRoot;
    else
      return &FileSystem::getPathRelativeBinary;
  }

  static std::string getPathRelativeRoot(const std::string& path)
  {
    
    
    return getRoot() + std::string("/") + path;
  }

  static std::string getPathRelativeBinary(const std::string& path)
  {
    
    
    return "../../../" + path;
  }


};

// FILESYSTEM_H
#endif

shader_m.h文件

#ifndef SHADER_H
#define SHADER_H

#include <glad/glad.h>
#include <glm/glm.hpp>

#include <string>
#include <fstream>
#include <sstream>
#include <iostream>

class Shader
{
    
    
public:
    unsigned int ID;
    // constructor generates the shader on the fly
    // ------------------------------------------------------------------------
    Shader(const char* vertexPath, const char* fragmentPath)
    {
    
    
        // 1. retrieve the vertex/fragment source code from filePath
        std::string vertexCode;
        std::string fragmentCode;
        std::ifstream vShaderFile;
        std::ifstream fShaderFile;
        // ensure ifstream objects can throw exceptions:
        vShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
        fShaderFile.exceptions (std::ifstream::failbit | std::ifstream::badbit);
        try 
        {
    
    
            // open files
            vShaderFile.open(vertexPath);
            fShaderFile.open(fragmentPath);
            std::stringstream vShaderStream, fShaderStream;
            // read file's buffer contents into streams
            vShaderStream << vShaderFile.rdbuf();
            fShaderStream << fShaderFile.rdbuf();		
            // close file handlers
            vShaderFile.close();
            fShaderFile.close();
            // convert stream into string
            vertexCode = vShaderStream.str();
            fragmentCode = fShaderStream.str();			
        }
        catch (std::ifstream::failure& e)
        {
    
    
            std::cout << "ERROR::SHADER::FILE_NOT_SUCCESFULLY_READ: " << e.what() << std::endl;
        }
        const char* vShaderCode = vertexCode.c_str();
        const char * fShaderCode = fragmentCode.c_str();
        // 2. compile shaders
        unsigned int vertex, fragment;
        // vertex shader
        vertex = glCreateShader(GL_VERTEX_SHADER);
        glShaderSource(vertex, 1, &vShaderCode, NULL);
        glCompileShader(vertex);
        checkCompileErrors(vertex, "VERTEX");
        // fragment Shader
        fragment = glCreateShader(GL_FRAGMENT_SHADER);
        glShaderSource(fragment, 1, &fShaderCode, NULL);
        glCompileShader(fragment);
        checkCompileErrors(fragment, "FRAGMENT");
        // shader Program
        ID = glCreateProgram();
        glAttachShader(ID, vertex);
        glAttachShader(ID, fragment);
        glLinkProgram(ID);
        checkCompileErrors(ID, "PROGRAM");
        // delete the shaders as they're linked into our program now and no longer necessery
        glDeleteShader(vertex);
        glDeleteShader(fragment);

    }
    // activate the shader
    // ------------------------------------------------------------------------
    void use() const
    {
    
     
        glUseProgram(ID); 
    }
    // utility uniform functions
    // ------------------------------------------------------------------------
    void setBool(const std::string &name, bool value) const
    {
    
             
        glUniform1i(glGetUniformLocation(ID, name.c_str()), (int)value); 
    }
    // ------------------------------------------------------------------------
    void setInt(const std::string &name, int value) const
    {
    
     
        glUniform1i(glGetUniformLocation(ID, name.c_str()), value); 
    }
    // ------------------------------------------------------------------------
    void setFloat(const std::string &name, float value) const
    {
    
     
        glUniform1f(glGetUniformLocation(ID, name.c_str()), value); 
    }
    // ------------------------------------------------------------------------
    void setVec2(const std::string &name, const glm::vec2 &value) const
    {
    
     
        glUniform2fv(glGetUniformLocation(ID, name.c_str()), 1, &value[0]); 
    }
    void setVec2(const std::string &name, float x, float y) const
    {
    
     
        glUniform2f(glGetUniformLocation(ID, name.c_str()), x, y); 
    }
    // ------------------------------------------------------------------------
    void setVec3(const std::string &name, const glm::vec3 &value) const
    {
    
     
        glUniform3fv(glGetUniformLocation(ID, name.c_str()), 1, &value[0]); 
    }
    void setVec3(const std::string &name, float x, float y, float z) const
    {
    
     
        glUniform3f(glGetUniformLocation(ID, name.c_str()), x, y, z); 
    }
    // ------------------------------------------------------------------------
    void setVec4(const std::string &name, const glm::vec4 &value) const
    {
    
     
        glUniform4fv(glGetUniformLocation(ID, name.c_str()), 1, &value[0]); 
    }
    void setVec4(const std::string &name, float x, float y, float z, float w) const
    {
    
     
        glUniform4f(glGetUniformLocation(ID, name.c_str()), x, y, z, w); 
    }
    // ------------------------------------------------------------------------
    void setMat2(const std::string &name, const glm::mat2 &mat) const
    {
    
    
        glUniformMatrix2fv(glGetUniformLocation(ID, name.c_str()), 1, GL_FALSE, &mat[0][0]);
    }
    // ------------------------------------------------------------------------
    void setMat3(const std::string &name, const glm::mat3 &mat) const
    {
    
    
        glUniformMatrix3fv(glGetUniformLocation(ID, name.c_str()), 1, GL_FALSE, &mat[0][0]);
    }
    // ------------------------------------------------------------------------
    void setMat4(const std::string &name, const glm::mat4 &mat) const
    {
    
    
        glUniformMatrix4fv(glGetUniformLocation(ID, name.c_str()), 1, GL_FALSE, &mat[0][0]);
    }

private:
    // utility function for checking shader compilation/linking errors.
    // ------------------------------------------------------------------------
    void checkCompileErrors(GLuint shader, std::string type)
    {
    
    
        GLint success;
        GLchar infoLog[1024];
        if (type != "PROGRAM")
        {
    
    
            glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
            if (!success)
            {
    
    
                glGetShaderInfoLog(shader, 1024, NULL, infoLog);
                std::cout << "ERROR::SHADER_COMPILATION_ERROR of type: " << type << "\n" << infoLog << "\n -- --------------------------------------------------- -- " << std::endl;
            }
        }
        else
        {
    
    
            glGetProgramiv(shader, GL_LINK_STATUS, &success);
            if (!success)
            {
    
    
                glGetProgramInfoLog(shader, 1024, NULL, infoLog);
                std::cout << "ERROR::PROGRAM_LINKING_ERROR of type: " << type << "\n" << infoLog << "\n -- --------------------------------------------------- -- " << std::endl;
            }
        }
    }
};
#endif

camera.文件

#ifndef CAMERA_H
#define CAMERA_H

#include <glad/glad.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

#include <vector>

// Defines several possible options for camera movement. Used as abstraction to stay away from window-system specific input methods
enum Camera_Movement {
    
    
    FORWARD,
    BACKWARD,
    LEFT,
    RIGHT
};

// Default camera values
const float YAW         = -90.0f;
const float PITCH       =  0.0f;
const float SPEED       =  2.5f;
const float SENSITIVITY =  0.1f;
const float ZOOM        =  45.0f;


// An abstract camera class that processes input and calculates the corresponding Euler Angles, Vectors and Matrices for use in OpenGL
class Camera
{
    
    
public:
    // camera Attributes
    glm::vec3 Position;
    glm::vec3 Front;
    glm::vec3 Up;
    glm::vec3 Right;
    glm::vec3 WorldUp;
    // euler Angles
    float Yaw;
    float Pitch;
    // camera options
    float MovementSpeed;
    float MouseSensitivity;
    float Zoom;

    // constructor with vectors
    Camera(glm::vec3 position = glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3 up = glm::vec3(0.0f, 1.0f, 0.0f), float yaw = YAW, float pitch = PITCH) : Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED), MouseSensitivity(SENSITIVITY), Zoom(ZOOM)
    {
    
    
        Position = position;
        WorldUp = up;
        Yaw = yaw;
        Pitch = pitch;
        updateCameraVectors();
    }
    // constructor with scalar values
    Camera(float posX, float posY, float posZ, float upX, float upY, float upZ, float yaw, float pitch) : Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED), MouseSensitivity(SENSITIVITY), Zoom(ZOOM)
    {
    
    
        Position = glm::vec3(posX, posY, posZ);
        WorldUp = glm::vec3(upX, upY, upZ);
        Yaw = yaw;
        Pitch = pitch;
        updateCameraVectors();
    }

    // returns the view matrix calculated using Euler Angles and the LookAt Matrix
    glm::mat4 GetViewMatrix()
    {
    
    
        return glm::lookAt(Position, Position + Front, Up);
    }

    // processes input received from any keyboard-like input system. Accepts input parameter in the form of camera defined ENUM (to abstract it from windowing systems)
    void ProcessKeyboard(Camera_Movement direction, float deltaTime)
    {
    
    
        float velocity = MovementSpeed * deltaTime;
        if (direction == FORWARD)
            Position += Front * velocity;
        if (direction == BACKWARD)
            Position -= Front * velocity;
        if (direction == LEFT)
            Position -= Right * velocity;
        if (direction == RIGHT)
            Position += Right * velocity;
    }

    // processes input received from a mouse input system. Expects the offset value in both the x and y direction.
    void ProcessMouseMovement(float xoffset, float yoffset, GLboolean constrainPitch = true)
    {
    
    
        xoffset *= MouseSensitivity;
        yoffset *= MouseSensitivity;

        Yaw   += xoffset;
        Pitch += yoffset;

        // make sure that when pitch is out of bounds, screen doesn't get flipped
        if (constrainPitch)
        {
    
    
            if (Pitch > 89.0f)
                Pitch = 89.0f;
            if (Pitch < -89.0f)
                Pitch = -89.0f;
        }

        // update Front, Right and Up Vectors using the updated Euler angles
        updateCameraVectors();
    }

    // processes input received from a mouse scroll-wheel event. Only requires input on the vertical wheel-axis
    void ProcessMouseScroll(float yoffset)
    {
    
    
        Zoom -= (float)yoffset;
        if (Zoom < 1.0f)
            Zoom = 1.0f;
        if (Zoom > 45.0f)
            Zoom = 45.0f; 
    }

private:
    // calculates the front vector from the Camera's (updated) Euler Angles
    void updateCameraVectors()
    {
    
    
        // calculate the new Front vector
        glm::vec3 front;
        front.x = cos(glm::radians(Yaw)) * cos(glm::radians(Pitch));
        front.y = sin(glm::radians(Pitch));
        front.z = sin(glm::radians(Yaw)) * cos(glm::radians(Pitch));
        Front = glm::normalize(front);
        // also re-calculate the Right and Up vector
        Right = glm::normalize(glm::cross(Front, WorldUp));  // normalize the vectors, because their length gets closer to 0 the more you look up or down which results in slower movement.
        Up    = glm::normalize(glm::cross(Right, Front));
    }
};
#endif
//头文件可以去learnopengl中获得,太多了这边不一一给出了
#include <glad/glad.h>
#include <GLFW/glfw3.h>

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

#include <learnopengl/filesystem.h>
#include <learnopengl/shader_m.h>
#include <learnopengl/camera.h>
#include <learnopengl/model.h>

#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

// camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = SCR_WIDTH / 2.0f;
float lastY = SCR_HEIGHT / 2.0f;
bool firstMouse = true;

// timing
float deltaTime = 0.0f;
float lastFrame = 0.0f;
// lighting
glm::vec3 lightPos(1.2f, 1.0f, 5.0f);
int main()
{
    
    
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

#ifdef __APPLE__
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif

    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    if (window == NULL)
    {
    
    
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
    glfwSetCursorPosCallback(window, mouse_callback);
    glfwSetScrollCallback(window, scroll_callback);

    // tell GLFW to capture our mouse
    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

    // glad: load all OpenGL function pointers
    // ---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
    
    
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

    // tell stb_image.h to flip loaded texture's on the y-axis (before loading model).
    stbi_set_flip_vertically_on_load(true);

    // configure global opengl state
    // -----------------------------
    glEnable(GL_DEPTH_TEST);

    // build and compile shaders
    // -------------------------
    Shader ourShader("1.model_loading.vs", "1.model_loading.fs");
    Shader lightCubeShader("4.2.light_cube.vs", "4.2.light_cube.fs");

    float vertices[] = {
    
    
       -0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
        0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
        0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
        0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
       -0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
       -0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,

       -0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
        0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
        0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
        0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
       -0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
       -0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,

       -0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
       -0.5f,  0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
       -0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
       -0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
       -0.5f, -0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
       -0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,

        0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
        0.5f,  0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
        0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
        0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
        0.5f, -0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
        0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,

       -0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
        0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
        0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
        0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
       -0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
       -0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,

       -0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
        0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
        0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
        0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
       -0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
       -0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f
    };
    // first, configure the cube's VAO (and VBO)
    unsigned int VBO, cubeVAO;
    glGenVertexArrays(1, &cubeVAO);
    glGenBuffers(1, &VBO);

    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

    glBindVertexArray(cubeVAO);

    // position attribute
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);
    // normal attribute
    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)(3 * sizeof(float)));
    glEnableVertexAttribArray(1);


    // second, configure the light's VAO (VBO stays the same; the vertices are the same for the light object which is also a 3D cube)
    unsigned int lightCubeVAO;
    glGenVertexArrays(1, &lightCubeVAO);
    glBindVertexArray(lightCubeVAO);

    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    // note that we update the lamp's position attribute's stride to reflect the updated buffer data
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);

    // load models
    // -----------
    Model ourModel[3];
    ourModel[0]= Model(FileSystem::getPath("resources/objects/backpack/Pikachu_X_Thor.stl"));
    ourModel[1] = Model(FileSystem::getPath("resources/objects/backpack/Wedding pikachu with sofa.stl"));
    ourModel[2] = Model(FileSystem::getPath("resources/objects/backpack/kitten.stl"));
     //draw in wireframe
    //glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
   glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
    // render loop
    // -----------
    while (!glfwWindowShouldClose(window))
    {
    
    
        // per-frame time logic
        // --------------------
        float currentFrame = static_cast<float>(glfwGetTime());
        deltaTime = currentFrame - lastFrame;
        lastFrame = currentFrame;

        // input
        // -----
        processInput(window);

        // render
        // ------
        glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        // don't forget to enable shader before setting uniforms
        ourShader.use();
        ourShader.setVec3("objectColor", 248.0f/255.0f, 235.0f/255.0f, 214.0f/255.0f);
        ourShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);
        ourShader.setVec3("lightPos", lightPos);
        ourShader.setVec3("viewPos", camera.Position);
        int spvalue = 256;
        ourShader.setInt("spvalue", spvalue);
        // view/projection transformations
        glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
        glm::mat4 view = camera.GetViewMatrix();
        ourShader.setMat4("projection", projection);
        ourShader.setMat4("view", view);

        // render the loaded model
        glm::mat4 model = glm::mat4(1.0f);
        model = glm::translate(model, glm::vec3(0.0f, 0.0f, 0.0f)); // translate it down so it's at the center of the scene
        model = glm::rotate(model, glm::radians(-60.0f), glm::vec3(1.0f,0.0f,0.0f));
        model = glm::scale(model, glm::vec3(0.05f, 0.05f, 0.05f));	// it's a bit too big for our scene, so scale it down
        ourShader.setMat4("model", model);
        ourModel[0].Draw(ourShader);

        ourShader.setVec3("objectColor", 181.0f/255.0f, 196.0f/255.0f, 177.0f/255.0f);
        ourShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);
        ourModel[1].Draw(ourShader);


        ourShader.setVec3("objectColor", 193.0f / 255.0f, 204.0f / 255.0f, 214.0f / 255.0f);
        ourShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);
        ourModel[2].Draw(ourShader);


        lightCubeShader.use();
        lightCubeShader.setMat4("projection", projection);
        lightCubeShader.setMat4("view", view);
        model = glm::mat4(1.0f);
        model = glm::translate(model, lightPos);
        model = glm::scale(model, glm::vec3(0.2f)); // a smaller cube
        lightCubeShader.setMat4("model", model);

        glBindVertexArray(lightCubeVAO);
        glDrawArrays(GL_TRIANGLES, 0, 36);

        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    // glfw: terminate, clearing all previously allocated GLFW resources.
    // ------------------------------------------------------------------
    glfwTerminate();
    return 0;
}

// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
    
    
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);

    if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
        camera.ProcessKeyboard(FORWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
        camera.ProcessKeyboard(BACKWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
        camera.ProcessKeyboard(LEFT, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
        camera.ProcessKeyboard(RIGHT, deltaTime);
}

// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    
    
    // make sure the viewport matches the new window dimensions; note that width and 
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}

// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
{
    
    
    float xpos = static_cast<float>(xposIn);
    float ypos = static_cast<float>(yposIn);

    if (firstMouse)
    {
    
    
        lastX = xpos;
        lastY = ypos;
        firstMouse = false;
    }

    float xoffset = xpos - lastX;
    float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top

    lastX = xpos;
    lastY = ypos;

    camera.ProcessMouseMovement(xoffset, yoffset);
}

// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
    
    
    camera.ProcessMouseScroll(static_cast<float>(yoffset));
}

加载模型顶点着色器

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;

out vec3 FragPos;
out vec3 Normal;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    
    
    FragPos = vec3(model * vec4(aPos, 1.0));
    Normal = mat3(transpose(inverse(model))) * aNormal;  
    
    gl_Position = projection * view * vec4(FragPos, 1.0);
}

加载模型片段着色器

#version 330 core
out vec4 FragColor;

in vec3 Normal;  
in vec3 FragPos;  
  
uniform vec3 lightPos; 
uniform vec3 viewPos; 
uniform vec3 lightColor;
uniform vec3 objectColor;
uniform int spvalue;
void main()
{
    
    
    // ambient
    float ambientStrength = 0.1;
    vec3 ambient = ambientStrength * lightColor;
  	
    // diffuse 
    vec3 norm = normalize(Normal);
    vec3 lightDir = normalize(lightPos - FragPos);
    float diff = max(dot(norm, lightDir), 0.0);
    vec3 diffuse = diff * lightColor;
    
    // specular
    float specularStrength = 0.5;
    vec3 viewDir = normalize(viewPos - FragPos);
    vec3 reflectDir = reflect(-lightDir, norm);  
    float spec = pow(max(dot(viewDir, reflectDir), 0.0), spvalue);
    vec3 specular = specularStrength * spec * lightColor;  
        
    vec3 result = (ambient + diffuse + specular) * objectColor;
    FragColor = vec4(result, 1.0);
} 

光源顶点着色器

#version 330 core
layout (location = 0) in vec3 aPos;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    
    
    gl_Position = projection * view * model * vec4(aPos, 1.0);
}

光源片段着色器

#version 330 core
out vec4 FragColor;

void main()
{
    
    
    FragColor = vec4(1.0); // set alle 4 vector values to 1.0
}

线框模式下得到的结果如下:
请添加图片描述
网格放大如图所示:
请添加图片描述

猜你喜欢

转载自blog.csdn.net/weixin_44478077/article/details/124988728