四、并发编程之AQS详解

并发之父 Doug Lea

生平不识Doug Lea ,学懂并发也枉然在这里插入图片描述
Java并发编程核心在于java.concurrent.util包而juc当中的大多数同步器 实现都是围绕着共同的基础行为,比如等待队列、条件队列、独占获取、共享获 取等,而这个行为的抽象就是基于AbstractQueuedSynchronizer简称AQS,AQS定 义了一套多线程访问共享资源的同步器框架,是一个依赖状态(state)的同步器。

AQS具备的特性:

  • 阻塞等待队列
  • 公平/非公平
  • 独占/共享
  • 可重入
  • 允许中断

例如Java.concurrent.util当中同步器的实现如Lock,Latch,Barrier等,都是基 于AQS框架实现

  • 一般通过定义内部类Sync继承AQS
  • 将同步器所有调用都映射到Sync对应到方法

AQS内部维护属性volatile int state(32位)

  • state表示资源的可用状态

state三种访问方式
getState(),setState(),compareAndSetState()

AQS定义两种资源共享方式

  • Exclusive-独占,只有一个线程能执行,如ReetrantLock
  • Share-共享,多个线程可以同时执行,如Semaphore/CountDownLatch

AQS定义的两种队列

  • 条件等待队列
  • 同步等待队列

不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只 需要实现共享资源state的获取与释放方式即可,至于具体线程等待队列的维护 (如获取资源失败入队/唤醒出队等),AQS已经在顶层实现好了。自定义同步器 实现时主要实现以下几种方法:

  • isHeldExclusively():该线程是否正在独占资源。只有用到 condition才需要去实现它。
  • tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败 则返回false。
  • tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败 则返回false。
  • tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败; 0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
  • tryReleaseShared(int):共享方式。尝试释放资源,如果释放后允许 唤醒后续等待结点返回true,否则返回false。

同步等待队列
QS当中的同步等待队列也称CLH队列,CLH队列是Craig、Landin、 Hagersten三人发明的一种基于双向链表数据结构的队列,是FIFO先入先出线程等待队列,Java中的CLH队列是原CLH队列的一个变种,线程由原自旋机制改为阻塞机制。
在这里插入图片描述
条件等待队列
Condition是一个多线程间协调通信的工具类,使得某个,或者某些线程一 起等待某个条件(Condition),只有当该条件具备时,这些等待线程才会被唤 醒,从而重新争夺锁
在这里插入图片描述

公平锁
公平和非公平锁的队列都基于锁内部维护的一个双向链表,表结点Node的值就是每一个请求当前锁的线程。公平锁则在于每次都是依次从队首取值。
锁的实现方式是基于如下几点:

  • 表结点Node和状态state的volatile关键字。
  • sum.misc.Unsafe.compareAndSet的原子操作(见附录)
    在这里插入图片描述
    核心代码:
/**
     * 公平锁
     */
    static final class FairSync extends Sync {
    
    
        private static final long serialVersionUID = -3000897897090466540L;

        final void lock() {
    
    
            acquire(1);
        }

        /**
         * 重写aqs中的方法逻辑
         * 尝试加锁,被AQS的acquire()方法调用
         */
        protected final boolean tryAcquire(int acquires) {
    
    
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
    
    
                /**
                 * 与非公平锁中的区别,需要先判断队列当中是否有等待的节点
                 * 如果没有则可以尝试CAS获取锁
                 */
                if (!hasQueuedPredecessors() &&
                        compareAndSetState(0, acquires)) {
    
    
                    //独占线程指向当前线程
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
    
    
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
    }

非公平锁
在等待锁的过程中, 如果有任意新的线程妄图获取锁,都是有很大的几率直接获取到锁的。

  • ReentrantLock锁都不会使得线程中断,除非开发者自己设置了中断位。
  • ReentrantLock获取锁里面有看似自旋的代码,但是它不是自旋锁。
  • ReentrantLock公平与非公平锁都是属于排它锁。
    在这里插入图片描述
    核心代码:
/**
     * 非公平锁
     */
    static final class NonfairSync extends Sync {
    
    
        private static final long serialVersionUID = 7316153563782823691L;
        /**
         * 加锁行为
         */
        final void lock() {
    
    
            /**
             * 第一步:直接尝试加锁
             * 与公平锁实现的加锁行为一个最大的区别在于,此处不会去判断同步队列(CLH队列)中
             * 是否有排队等待加锁的节点,上来直接加锁(判断state是否为0,CAS修改state为1)
             * ,并将独占锁持有者 exclusiveOwnerThread 属性指向当前线程
             * 如果当前有人占用锁,再尝试去加一次锁
             */
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                //AQS定义的方法,加锁
                acquire(1);
        }

        /**
         * 父类AbstractQueuedSynchronizer.acquire()中调用本方法
         */
        protected final boolean tryAcquire(int acquires) {
    
    
            return nonfairTryAcquire(acquires);
        }
    }

可重入锁
可重入锁也叫递归锁,指的是同一线程外层函数获得锁之后,内层递归函数仍然有获取该锁的代码,但不受影响。
在这里插入图片描述
核心代码:

public class LockTemplete {
    
    
    private Integer counter = 0;
    /**
     * 可重入锁,公平锁
     * 公平锁,
     * 非公平锁
     * 需要保证多个线程使用的是同一个锁
     *
     *
     * synchronized是否可重入?
     * 虚拟机,在ObjectMonitor.hpp定义了synchronized他怎么取重入加锁 ..。hotspot源码
     * counter +1
     * 基于AQS 去实现加锁与解锁
     */
    private ReentrantLock lock = new ReentrantLock(true);

    /**
     * 需要保证多个线程使用的是同一个ReentrantLock对象
     * @return
     */
    public void modifyResources(String threadName){
    
    
        System.out.println("通知《管理员》线程:--->"+threadName+"准备打水");
        //默认创建的是独占锁,排它锁;同一时刻读或者写只允许一个线程获取锁
        lock.lock();
            System.out.println("线程:--->"+threadName+"第一次加锁");
            counter++;
            System.out.println("线程:"+threadName+"打第"+counter+"桶水");
            //重入该锁,我还有一件事情要做,没做完之前不能把锁资源让出去
            lock.lock();
            System.out.println("线程:--->"+threadName+"第二次加锁");
            counter++;
            System.out.println("线程:"+threadName+"打第"+counter+"桶水");
            lock.unlock();
            System.out.println("线程:"+threadName+"释放一个锁");
        lock.unlock();
        System.out.println("线程:"+threadName+"释放一个锁");
    }


    public static void main(String[] args){
    
    
        LockTemplete tp = new LockTemplete();

        new Thread(()->{
    
    
            String threadName = Thread.currentThread().getName();
            tp.modifyResources(threadName);
        },"Thread1").start();

        /*new Thread(()->{
            String threadName = Thread.currentThread().getName();
            tp.modifyResources(threadName);
        },"Thread2").start();*/

    }

}

打印结果:
在这里插入图片描述
这里能够打第2桶水,说明了ReentranLock是一个可重入锁

不可重入锁
若当前线程执行中已经获取了锁,如果再次获取该锁时,就会获取不到被阻塞
在这里插入图片描述

读写锁ReentrantReadWriteLock

  • 写锁(独占锁,排他锁):是指该锁只能被一个线程所持有,如果线程T对数据A加上了排他锁,则其他线程不能再对A加任何类型的锁,获得写锁线程既能读数据又能改数据。
  • 读锁(共享锁):是指该锁能被多个线程所持有,如果线程T对数据A加上共享锁后,则其他线程只能对A再加共享锁,不能加排他锁,获得该锁的线程只能读数据不能写数据

AQS中state字段(int类型,32位),此处state上分别描述读锁和写锁的数量,于是将state变量按位切割切分成了两个部分

  • 高16位表示读锁的状态(读锁个数)
  • 低16位表示写锁的状态(写锁个数)
    在这里插入图片描述

ReentrantLock带中文注释源码:

public class ReentrantLock implements Lock, java.io.Serializable {
    
    
    private static final long serialVersionUID = 7373984872572414699L;
    /**
     * 内部调用AQS的动作,都基于该成员属性实现
     */
    private final Sync sync;

    /**
     * ReentrantLock锁同步操作的基础类,继承自AQS框架.
     * 该类有两个继承类,1、NonfairSync 非公平锁,2、FairSync公平锁
     */
        abstract static class Sync extends AbstractQueuedSynchronizer {
    
    
        private static final long serialVersionUID = -5179523762034025860L;

        /**
         * 加锁的具体行为由子类实现
         */
        abstract void lock();

        /**
         * 尝试获取非公平锁
         */
        final boolean nonfairTryAcquire(int acquires) {
    
    
            //acquires = 1
            final Thread current = Thread.currentThread();
            int c = getState();
            /**
             * 不需要判断同步队列(CLH)中是否有排队等待线程
             * 判断state状态是否为0,不为0可以加锁
             */
            if (c == 0) {
    
    
                //unsafe操作,cas修改state状态
                if (compareAndSetState(0, acquires)) {
    
    
                    //独占状态锁持有者指向当前线程
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            /**
             * state状态不为0,判断锁持有者是否是当前线程,
             * 如果是当前线程持有 则state+1
             */
            else if (current == getExclusiveOwnerThread()) {
    
    
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            //加锁失败
            return false;
        }

        /**
         * 释放锁
         */
        protected final boolean tryRelease(int releases) {
    
    
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            if (c == 0) {
    
    
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }

        /**
         * 判断持有独占锁的线程是否是当前线程
         */
        protected final boolean isHeldExclusively() {
    
    
            return getExclusiveOwnerThread() == Thread.currentThread();
        }

        //返回条件对象
        final ConditionObject newCondition() {
    
    
            return new ConditionObject();
        }


        final Thread getOwner() {
    
    
            return getState() == 0 ? null : getExclusiveOwnerThread();
        }

        final int getHoldCount() {
    
    
            return isHeldExclusively() ? getState() : 0;
        }

        final boolean isLocked() {
    
    
            return getState() != 0;
        }

        /**
         * Reconstitutes the instance from a stream (that is, deserializes it).
         */
        private void readObject(java.io.ObjectInputStream s)
                throws java.io.IOException, ClassNotFoundException {
    
    
            s.defaultReadObject();
            setState(0); // reset to unlocked state
        }
    }

    /**
     * 非公平锁
     */
    static final class NonfairSync extends Sync {
    
    
        private static final long serialVersionUID = 7316153563782823691L;
        /**
         * 加锁行为
         */
        final void lock() {
    
    
            /**
             * 第一步:直接尝试加锁
             * 与公平锁实现的加锁行为一个最大的区别在于,此处不会去判断同步队列(CLH队列)中
             * 是否有排队等待加锁的节点,上来直接加锁(判断state是否为0,CAS修改state为1)
             * ,并将独占锁持有者 exclusiveOwnerThread 属性指向当前线程
             * 如果当前有人占用锁,再尝试去加一次锁
             */
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                //AQS定义的方法,加锁
                acquire(1);
        }

        /**
         * 父类AbstractQueuedSynchronizer.acquire()中调用本方法
         */
        protected final boolean tryAcquire(int acquires) {
    
    
            return nonfairTryAcquire(acquires);
        }
    }

    /**
     * 公平锁
     */
    static final class FairSync extends Sync {
    
    
        private static final long serialVersionUID = -3000897897090466540L;

        final void lock() {
    
    
            acquire(1);
        }

        /**
         * 重写aqs中的方法逻辑
         * 尝试加锁,被AQS的acquire()方法调用
         */
        protected final boolean tryAcquire(int acquires) {
    
    
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
    
    
                /**
                 * 与非公平锁中的区别,需要先判断队列当中是否有等待的节点
                 * 如果没有则可以尝试CAS获取锁
                 */
                if (!hasQueuedPredecessors() &&
                        compareAndSetState(0, acquires)) {
    
    
                    //独占线程指向当前线程
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
    
    
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
    }

    /**
     * 默认构造函数,创建非公平锁对象
     */
    public ReentrantLock() {
    
    
        sync = new NonfairSync();
    }

    /**
     * 根据要求创建公平锁或非公平锁
     */
    public ReentrantLock(boolean fair) {
    
    
        sync = fair ? new FairSync() : new NonfairSync();
    }

    /**
     * 加锁
     */
    public void lock() {
    
    
        sync.lock();
    }

    /**
     * 尝试获去取锁,获取失败被阻塞,线程被中断直接抛出异常
     */
    public void lockInterruptibly() throws InterruptedException {
    
    
        sync.acquireInterruptibly(1);
    }

    /**
     * 尝试加锁
     */
    public boolean tryLock() {
    
    
        return sync.nonfairTryAcquire(1);
    }

    /**
     * 指定等待时间内尝试加锁
     */
    public boolean tryLock(long timeout, TimeUnit unit)
            throws InterruptedException {
    
    
        return sync.tryAcquireNanos(1, unit.toNanos(timeout));
    }

    /**
     * 尝试去释放锁
     */
    public void unlock() {
    
    
        sync.release(1);
    }

    /**
     * 返回条件对象
     */
    public Condition newCondition() {
    
    
        return sync.newCondition();
    }

    /**
     * 返回当前线程持有的state状态数量
     */
    public int getHoldCount() {
    
    
        return sync.getHoldCount();
    }

    /**
     * 查询当前线程是否持有锁
     */
    public boolean isHeldByCurrentThread() {
    
    
        return sync.isHeldExclusively();
    }

    /**
     * 状态表示是否被Thread加锁持有
     */
    public boolean isLocked() {
    
    
        return sync.isLocked();
    }

    /**
     * 是否公平锁?是返回true 否则返回 false
     */
    public final boolean isFair() {
    
    
        return sync instanceof FairSync;
    }

    /**
     * Returns the thread that currently owns this lock, or
     * {@code null} if not owned. When this method is called by a
     * thread that is not the owner, the return value reflects a
     * best-effort approximation of current lock status. For example,
     * the owner may be momentarily {@code null} even if there are
     * threads trying to acquire the lock but have not yet done so.
     * This method is designed to facilitate construction of
     * subclasses that provide more extensive lock monitoring
     * facilities.
     *
     * @return the owner, or {@code null} if not owned
     */
    protected Thread getOwner() {
    
    
        return sync.getOwner();
    }

    /**
     * 判断队列当中是否有在等待获取锁的Thread节点
     */
    public final boolean hasQueuedThreads() {
    
    
        return sync.hasQueuedThreads();
    }

    /**
     * 当前线程是否在同步队列中等待
     */
    public final boolean hasQueuedThread(Thread thread) {
    
    
        return sync.isQueued(thread);
    }

    /**
     * Returns an estimate of the number of threads waiting to
     * acquire this lock.  The value is only an estimate because the number of
     * threads may change dynamically while this method traverses
     * internal data structures.  This method is designed for use in
     * monitoring of the system state, not for synchronization
     * control.
     *
     * @return the estimated number of threads waiting for this lock
     */
    public final int getQueueLength() {
    
    
        return sync.getQueueLength();
    }

    /**
     * 返回Thread集合,排队中的所有节点Thread会被返回
     */
    protected Collection<Thread> getQueuedThreads() {
    
    
        return sync.getQueuedThreads();
    }

    /**
     * 条件队列当中是否有正在等待的节点
     */
    public boolean hasWaiters(Condition condition) {
    
    
        if (condition == null)
            throw new NullPointerException();
        if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
            throw new IllegalArgumentException("not owner");
        return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
    }

    /**
     * Returns an estimate of the number of threads waiting on the
     * given condition associated with this lock. Note that because
     * timeouts and interrupts may occur at any time, the estimate
     * serves only as an upper bound on the actual number of waiters.
     * This method is designed for use in monitoring of the system
     * state, not for synchronization control.
     *
     * @param condition the condition
     * @return the estimated number of waiting threads
     * @throws IllegalMonitorStateException if this lock is not held
     * @throws IllegalArgumentException if the given condition is
     *         not associated with this lock
     * @throws NullPointerException if the condition is null
     */
    public int getWaitQueueLength(Condition condition) {
    
    
        if (condition == null)
            throw new NullPointerException();
        if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
            throw new IllegalArgumentException("not owner");
        return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition);
    }

    /**
     * Returns a collection containing those threads that may be
     * waiting on the given condition associated with this lock.
     * Because the actual set of threads may change dynamically while
     * constructing this result, the returned collection is only a
     * best-effort estimate. The elements of the returned collection
     * are in no particular order.  This method is designed to
     * facilitate construction of subclasses that provide more
     * extensive condition monitoring facilities.
     *
     * @param condition the condition
     * @return the collection of threads
     * @throws IllegalMonitorStateException if this lock is not held
     * @throws IllegalArgumentException if the given condition is
     *         not associated with this lock
     * @throws NullPointerException if the condition is null
     */
    protected Collection<Thread> getWaitingThreads(Condition condition) {
    
    
        if (condition == null)
            throw new NullPointerException();
        if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
            throw new IllegalArgumentException("not owner");
        return sync.getWaitingThreads((AbstractQueuedSynchronizer.ConditionObject)condition);
    }

    /**
     * Returns a string identifying this lock, as well as its lock state.
     * The state, in brackets, includes either the String {@code "Unlocked"}
     * or the String {@code "Locked by"} followed by the
     * {@linkplain Thread#getName name} of the owning thread.
     *
     * @return a string identifying this lock, as well as its lock state
     */
    public String toString() {
    
    
        Thread o = sync.getOwner();
        return super.toString() + ((o == null) ?
                "[Unlocked]" :
                "[Locked by thread " + o.getName() + "]");
    }
}

AQS带中文注释源码:

public abstract class AbstractQueuedSynchronizer
        extends AbstractOwnableSynchronizer
        implements java.io.Serializable {
    
    
    private static final long serialVersionUID = 7373984972572414691L;

    /**
     * Creates a new {@code AbstractQueuedSynchronizer} instance
     * with initial synchronization state of zero.
     */
    protected AbstractQueuedSynchronizer() {
    
     }

    /**
     * Wait queue node class.
     *
     * <p>The wait queue is a variant of a "CLH" (Craig, Landin, and
     * Hagersten) lock queue. CLH locks are normally used for
     * spinlocks.  We instead use them for blocking synchronizers, but
     * use the same basic tactic of holding some of the control
     * information about a thread in the predecessor of its node.  A
     * "status" field in each node keeps track of whether a thread
     * should block.  A node is signalled when its predecessor
     * releases.  Each node of the queue otherwise serves as a
     * specific-notification-style monitor holding a single waiting
     * thread. The status field does NOT control whether threads are
     * granted locks etc though.  A thread may try to acquire if it is
     * first in the queue. But being first does not guarantee success;
     * it only gives the right to contend.  So the currently released
     * contender thread may need to rewait.
     *
     * <p>To enqueue into a CLH lock, you atomically splice it in as new
     * tail. To dequeue, you just set the head field.
     * <pre>
     *      +------+  prev +-----+       +-----+
     * head |      | <---- |     | <---- |     |  tail
     *      +------+       +-----+       +-----+
     * </pre>
     *
     * <p>Insertion into a CLH queue requires only a single atomic
     * operation on "tail", so there is a simple atomic point of
     * demarcation from unqueued to queued. Similarly, dequeuing
     * involves only updating the "head". However, it takes a bit
     * more work for nodes to determine who their successors are,
     * in part to deal with possible cancellation due to timeouts
     * and interrupts.
     *
     * <p>The "prev" links (not used in original CLH locks), are mainly
     * needed to handle cancellation. If a node is cancelled, its
     * successor is (normally) relinked to a non-cancelled
     * predecessor. For explanation of similar mechanics in the case
     * of spin locks, see the papers by Scott and Scherer at
     * http://www.cs.rochester.edu/u/scott/synchronization/
     *
     * <p>We also use "next" links to implement blocking mechanics.
     * The thread id for each node is kept in its own node, so a
     * predecessor signals the next node to wake up by traversing
     * next link to determine which thread it is.  Determination of
     * successor must avoid races with newly queued nodes to set
     * the "next" fields of their predecessors.  This is solved
     * when necessary by checking backwards from the atomically
     * updated "tail" when a node's successor appears to be null.
     * (Or, said differently, the next-links are an optimization
     * so that we don't usually need a backward scan.)
     *
     * <p>Cancellation introduces some conservatism to the basic
     * algorithms.  Since we must poll for cancellation of other
     * nodes, we can miss noticing whether a cancelled node is
     * ahead or behind us. This is dealt with by always unparking
     * successors upon cancellation, allowing them to stabilize on
     * a new predecessor, unless we can identify an uncancelled
     * predecessor who will carry this responsibility.
     *
     * <p>CLH queues need a dummy header node to get started. But
     * we don't create them on construction, because it would be wasted
     * effort if there is never contention. Instead, the node
     * is constructed and head and tail pointers are set upon first
     * contention.
     *
     * <p>Threads waiting on Conditions use the same nodes, but
     * use an additional link. Conditions only need to link nodes
     * in simple (non-concurrent) linked queues because they are
     * only accessed when exclusively held.  Upon await, a node is
     * inserted into a condition queue.  Upon signal, the node is
     * transferred to the main queue.  A special value of status
     * field is used to mark which queue a node is on.
     *
     * <p>Thanks go to Dave Dice, Mark Moir, Victor Luchangco, Bill
     * Scherer and Michael Scott, along with members of JSR-166
     * expert group, for helpful ideas, discussions, and critiques
     * on the design of this class.
     */
    static final class Node {
    
    
        /**
         * 标记节点未共享模式
         * */
        static final Node SHARED = new Node();
        /**
         *  标记节点为独占模式
         */
        static final Node EXCLUSIVE = null;

        /**
         * 在同步队列中等待的线程等待超时或者被中断,需要从同步队列中取消等待
         * */
        static final int CANCELLED =  1;
        /**
         *  后继节点的线程处于等待状态,而当前的节点如果释放了同步状态或者被取消,
         *  将会通知后继节点,使后继节点的线程得以运行。
         */
        static final int SIGNAL    = -1;
        /**
         *  节点在等待队列中,节点的线程等待在Condition上,当其他线程对Condition调用了signal()方法后,
         *  该节点会从等待队列中转移到同步队列中,加入到同步状态的获取中
         */
        static final int CONDITION = -2;
        /**
         * 表示下一次共享式同步状态获取将会被无条件地传播下去
         */
        static final int PROPAGATE = -3;

        /**
         * 标记当前节点的信号量状态 (1,0,-1,-2,-3)5种状态
         * 使用CAS更改状态,volatile保证线程可见性,高并发场景下,
         * 即被一个线程修改后,状态会立马让其他线程可见。
         */
        volatile int waitStatus;

        /**
         * 前驱节点,当前节点加入到同步队列中被设置
         */
        volatile Node prev;

        /**
         * 后继节点
         */
        volatile Node next;

        /**
         * 节点同步状态的线程
         */
        volatile Thread thread;

        /**
         * 等待队列中的后继节点,如果当前节点是共享的,那么这个字段是一个SHARED常量,
         * 也就是说节点类型(独占和共享)和等待队列中的后继节点共用同一个字段。
         */
        Node nextWaiter;

        /**
         * Returns true if node is waiting in shared mode.
         */
        final boolean isShared() {
    
    
            return nextWaiter == SHARED;
        }

        /**
         * 返回前驱节点
         */
        final Node predecessor() throws NullPointerException {
    
    
            Node p = prev;
            if (p == null)
                throw new NullPointerException();
            else
                return p;
        }

        Node() {
    
        // Used to establish initial head or SHARED marker
        }

        Node(Thread thread, Node mode) {
    
         // Used by addWaiter
            this.nextWaiter = mode;
            this.thread = thread;
        }

        Node(Thread thread, int waitStatus) {
    
     // Used by Condition
            this.waitStatus = waitStatus;
            this.thread = thread;
        }
    }

    /**
     * 指向同步等待队列的头节点
     */
    private transient volatile Node head;

    /**
     * 指向同步等待队列的尾节点
     */
    private transient volatile Node tail;

    /**
     * 同步资源状态
     */
    private volatile int state;

    /**
     * Returns the current value of synchronization state.
     * This operation has memory semantics of a {@code volatile} read.
     * @return current state value
     */
    protected final int getState() {
    
    
        return state;
    }

    /**
     * Sets the value of synchronization state.
     * This operation has memory semantics of a {@code volatile} write.
     * @param newState the new state value
     */
    protected final void setState(int newState) {
    
    
        state = newState;
    }

    /**
     * Atomically sets synchronization state to the given updated
     * value if the current state value equals the expected value.
     * This operation has memory semantics of a {@code volatile} read
     * and write.
     *
     * @param expect the expected value
     * @param update the new value
     * @return {@code true} if successful. False return indicates that the actual
     *         value was not equal to the expected value.
     */
    protected final boolean compareAndSetState(int expect, int update) {
    
    
        // See below for intrinsics setup to support this
        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
    }

    // Queuing utilities

    /**
     * The number of nanoseconds for which it is faster to spin
     * rather than to use timed park. A rough estimate suffices
     * to improve responsiveness with very short timeouts.
     */
    static final long spinForTimeoutThreshold = 1000L;

    /**
     * 节点加入CLH同步队列
     */
    private Node enq(final Node node) {
    
    
        for (;;) {
    
    
            Node t = tail;
            if (t == null) {
    
     // Must initialize
                //队列为空需要初始化,创建空的头节点
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
    
    
                node.prev = t;
                //set尾部节点
                if (compareAndSetTail(t, node)) {
    
    //当前节点置为尾部
                    t.next = node; //前驱节点的next指针指向当前节点
                    return t;
                }
            }
        }
    }

    /**
     * Creates and enqueues node for current thread and given mode.
     *
     * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
     * @return the new node
     */
    private Node addWaiter(Node mode) {
    
    
        // 1. 将当前线程构建成Node类型
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        // 2. 1当前尾节点是否为null?
        if (pred != null) {
    
    
            // 2.2 将当前节点尾插入的方式
            node.prev = pred;
            // 2.3 CAS将节点插入同步队列的尾部
            if (compareAndSetTail(pred, node)) {
    
    
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }

    /**
     * Sets head of queue to be node, thus dequeuing. Called only by
     * acquire methods.  Also nulls out unused fields for sake of GC
     * and to suppress unnecessary signals and traversals.
     *
     * @param node the node
     */
    private void setHead(Node node) {
    
    
        head = node;
        node.thread = null;
        node.prev = null;
    }

    /**
     *
     */
    private void unparkSuccessor(Node node) {
    
    
        //获取wait状态
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);// 将等待状态waitStatus设置为初始值0

        /**
         * 若后继结点为空,或状态为CANCEL(已失效),则从后尾部往前遍历找到最前的一个处于正常阻塞状态的结点
         * 进行唤醒
         */
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
    
    
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);//唤醒线程
    }

    /**
     * 把当前结点设置为SIGNAL或者PROPAGATE
     * 唤醒head.next(B节点),B节点唤醒后可以竞争锁,成功后head->B,然后又会唤醒B.next,一直重复直到共享节点都唤醒
     * head节点状态为SIGNAL,重置head.waitStatus->0,唤醒head节点线程,唤醒后线程去竞争共享锁
     * head节点状态为0,将head.waitStatus->Node.PROPAGATE传播状态,表示需要将状态向后继节点传播
     */
    private void doReleaseShared() {
    
    
        for (;;) {
    
    
            Node h = head;
            if (h != null && h != tail) {
    
    
                int ws = h.waitStatus;
                if (ws == Node.SIGNAL) {
    
    //head是SIGNAL状态
                    /* head状态是SIGNAL,重置head节点waitStatus为0,这里不直接设为Node.PROPAGATE,
                     * 是因为unparkSuccessor(h)中,如果ws < 0会设置为0,所以ws先设置为0,再设置为PROPAGATE
                     * 这里需要控制并发,因为入口有setHeadAndPropagate跟release两个,避免两次unpark
                     */
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue; //设置失败,重新循环
                    /* head状态为SIGNAL,且成功设置为0之后,唤醒head.next节点线程
                     * 此时head、head.next的线程都唤醒了,head.next会去竞争锁,成功后head会指向获取锁的节点,
                     * 也就是head发生了变化。看最底下一行代码可知,head发生变化后会重新循环,继续唤醒head的下一个节点
                     */
                    unparkSuccessor(h);
                    /*
                     * 如果本身头节点的waitStatus是出于重置状态(waitStatus==0)的,将其设置为“传播”状态。
                     * 意味着需要将状态向后一个节点传播
                     */
                }
                else if (ws == 0 &&
                        !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;                // loop on failed CAS
            }
            if (h == head) //如果head变了,重新循环
                break;
        }
    }

    /**
     * 把node节点设置成head节点,且Node.waitStatus->Node.PROPAGATE
     */
    private void setHeadAndPropagate(Node node, int propagate) {
    
    
        Node h = head; //h用来保存旧的head节点
        setHead(node);//head引用指向node节点
        /* 这里意思有两种情况是需要执行唤醒操作
         * 1.propagate > 0 表示调用方指明了后继节点需要被唤醒
         * 2.头节点后面的节点需要被唤醒(waitStatus<0),不论是老的头结点还是新的头结点
         */
        if (propagate > 0 || h == null || h.waitStatus < 0 ||
                (h = head) == null || h.waitStatus < 0) {
    
    
            Node s = node.next;
            if (s == null || s.isShared())//node是最后一个节点或者 node的后继节点是共享节点
                /* 如果head节点状态为SIGNAL,唤醒head节点线程,重置head.waitStatus->0
                 * head节点状态为0(第一次添加时是0),设置head.waitStatus->Node.PROPAGATE表示状态需要向后继节点传播
                 */
                doReleaseShared();
        }
    }

    // Utilities for various versions of acquire

    /**
     * Cancels an ongoing attempt to acquire.
     *
     * @param node the node
     */
    private void cancelAcquire(Node node) {
    
    
        // Ignore if node doesn't exist
        if (node == null)
            return;

        node.thread = null;

        // Skip cancelled predecessors
        Node pred = node.prev;
        while (pred.waitStatus > 0)
            node.prev = pred = pred.prev;

        // predNext is the apparent node to unsplice. CASes below will
        // fail if not, in which case, we lost race vs another cancel
        // or signal, so no further action is necessary.
        Node predNext = pred.next;

        // Can use unconditional write instead of CAS here.
        // After this atomic step, other Nodes can skip past us.
        // Before, we are free of interference from other threads.
        node.waitStatus = Node.CANCELLED;

        // If we are the tail, remove ourselves.
        if (node == tail && compareAndSetTail(node, pred)) {
    
    
            compareAndSetNext(pred, predNext, null);
        } else {
    
    
            // If successor needs signal, try to set pred's next-link
            // so it will get one. Otherwise wake it up to propagate.
            int ws;
            if (pred != head &&
                    ((ws = pred.waitStatus) == Node.SIGNAL ||
                            (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                    pred.thread != null) {
    
    
                Node next = node.next;
                if (next != null && next.waitStatus <= 0)
                    compareAndSetNext(pred, predNext, next);
            } else {
    
    
                unparkSuccessor(node);
            }

            node.next = node; // help GC
        }
    }

    /**
     * Checks and updates status for a node that failed to acquire.
     * Returns true if thread should block. This is the main signal
     * control in all acquire loops.  Requires that pred == node.prev.
     *
     * @param pred node's predecessor holding status
     * @param node the node
     * @return {@code true} if thread should block
     */
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
    
    
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             * 若前驱结点的状态是SIGNAL,意味着当前结点可以被安全地park
             */
            return true;
        if (ws > 0) {
    
    
            /*
             * 前驱节点状态如果被取消状态,将被移除出队列
             */
            do {
    
    
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
    
    
            /*
             * 当前驱节点waitStatus为 0 or PROPAGATE状态时
             * 将其设置为SIGNAL状态,然后当前结点才可以可以被安全地park
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

    /**
     * Convenience method to interrupt current thread.
     */
    static void selfInterrupt() {
    
    
        Thread.currentThread().interrupt();
    }

    /**
     * 阻塞当前节点,返回当前Thread的中断状态
     * LockSupport.park 底层实现逻辑调用系统内核功能 pthread_mutex_lock 阻塞线程
     */
    private final boolean parkAndCheckInterrupt() {
    
    
        LockSupport.park(this);//阻塞
        return Thread.interrupted();
    }

    /*
     * Various flavors of acquire, varying in exclusive/shared and
     * control modes.  Each is mostly the same, but annoyingly
     * different.  Only a little bit of factoring is possible due to
     * interactions of exception mechanics (including ensuring that we
     * cancel if tryAcquire throws exception) and other control, at
     * least not without hurting performance too much.
     */

    /**
     * 已经在队列当中的Thread节点,准备阻塞等待获取锁
     */
    final boolean acquireQueued(final Node node, int arg) {
    
    
        boolean failed = true;
        try {
    
    
            boolean interrupted = false;
            for (;;) {
    
    //死循环
                final Node p = node.predecessor();//找到当前结点的前驱结点
                if (p == head && tryAcquire(arg)) {
    
    //如果前驱结点是头结点,才tryAcquire,其他结点是没有机会tryAcquire的。
                    setHead(node);//获取同步状态成功,将当前结点设置为头结点。
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                /**
                 * 如果前驱节点不是Head,通过shouldParkAfterFailedAcquire判断是否应该阻塞
                 * 前驱节点信号量为-1,当前线程可以安全被parkAndCheckInterrupt用来阻塞线程
                 */
                if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
    
    
            if (failed)
                cancelAcquire(node);
        }
    }

    /**
     * 与acquireQueued逻辑相似,唯一区别节点还不在队列当中需要先进行入队操作
     */
    private void doAcquireInterruptibly(int arg)
            throws InterruptedException {
    
    
        final Node node = addWaiter(Node.EXCLUSIVE);//以独占模式放入队列尾部
        boolean failed = true;
        try {
    
    
            for (;;) {
    
    
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
    
    
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
    
    
            if (failed)
                cancelAcquire(node);
        }
    }

    /**
     * 独占模式定时获取
     */
    private boolean doAcquireNanos(int arg, long nanosTimeout)
            throws InterruptedException {
    
    
        if (nanosTimeout <= 0L)
            return false;
        final long deadline = System.nanoTime() + nanosTimeout;
        final Node node = addWaiter(Node.EXCLUSIVE);//加入队列
        boolean failed = true;
        try {
    
    
            for (;;) {
    
    
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
    
    
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return true;
                }
                nanosTimeout = deadline - System.nanoTime();
                if (nanosTimeout <= 0L)
                    return false;//超时直接返回获取失败
                if (shouldParkAfterFailedAcquire(p, node) &&
                        nanosTimeout > spinForTimeoutThreshold)
                    //阻塞指定时长,超时则线程自动被唤醒
                    LockSupport.parkNanos(this, nanosTimeout);
                if (Thread.interrupted())//当前线程中断状态
                    throw new InterruptedException();
            }
        } finally {
    
    
            if (failed)
                cancelAcquire(node);
        }
    }

    /**
     * 尝试获取共享锁
     */
    private void doAcquireShared(int arg) {
    
    
        final Node node = addWaiter(Node.SHARED);//入队
        boolean failed = true;
        try {
    
    
            boolean interrupted = false;
            for (;;) {
    
    
                final Node p = node.predecessor();//前驱节点
                if (p == head) {
    
    
                    int r = tryAcquireShared(arg); //非公平锁实现,再尝试获取锁
                    //state==0时tryAcquireShared会返回>=0(CountDownLatch中返回的是1)。
                    // state为0说明共享次数已经到了,可以获取锁了
                    if (r >= 0) {
    
    //r>0表示state==0,前继节点已经释放锁,锁的状态为可被获取
                        //这一步设置node为head节点设置node.waitStatus->Node.PROPAGATE,然后唤醒node.thread
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        if (interrupted)
                            selfInterrupt();
                        failed = false;
                        return;
                    }
                }
                //前继节点非head节点,将前继节点状态设置为SIGNAL,通过park挂起node节点的线程
                if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
    
    
            if (failed)
                cancelAcquire(node);
        }
    }

    /**
     * Acquires in shared interruptible mode.
     * @param arg the acquire argument
     */
    private void doAcquireSharedInterruptibly(int arg)
            throws InterruptedException {
    
    
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
    
    
            for (;;) {
    
    
                final Node p = node.predecessor();
                if (p == head) {
    
    
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
    
    
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
    
    
            if (failed)
                cancelAcquire(node);
        }
    }

    /**
     * Acquires in shared timed mode.
     *
     * @param arg the acquire argument
     * @param nanosTimeout max wait time
     * @return {@code true} if acquired
     */
    private boolean doAcquireSharedNanos(int arg, long nanosTimeout)
            throws InterruptedException {
    
    
        if (nanosTimeout <= 0L)
            return false;
        final long deadline = System.nanoTime() + nanosTimeout;
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
    
    
            for (;;) {
    
    
                final Node p = node.predecessor();
                if (p == head) {
    
    
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
    
    
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return true;
                    }
                }
                nanosTimeout = deadline - System.nanoTime();
                if (nanosTimeout <= 0L)
                    return false;
                if (shouldParkAfterFailedAcquire(p, node) &&
                        nanosTimeout > spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if (Thread.interrupted())
                    throw new InterruptedException();
            }
        } finally {
    
    
            if (failed)
                cancelAcquire(node);
        }
    }

    // Main exported methods

    /**
     * Attempts to acquire in exclusive mode. This method should query
     * if the state of the object permits it to be acquired in the
     * exclusive mode, and if so to acquire it.
     *
     * <p>This method is always invoked by the thread performing
     * acquire.  If this method reports failure, the acquire method
     * may queue the thread, if it is not already queued, until it is
     * signalled by a release from some other thread. This can be used
     * to implement method {@link Lock#tryLock()}.
     *
     * <p>The default
     * implementation throws {@link UnsupportedOperationException}.
     *
     * @param arg the acquire argument. This value is always the one
     *        passed to an acquire method, or is the value saved on entry
     *        to a condition wait.  The value is otherwise uninterpreted
     *        and can represent anything you like.
     * @return {@code true} if successful. Upon success, this object has
     *         been acquired.
     * @throws IllegalMonitorStateException if acquiring would place this
     *         synchronizer in an illegal state. This exception must be
     *         thrown in a consistent fashion for synchronization to work
     *         correctly.
     * @throws UnsupportedOperationException if exclusive mode is not supported
     */
    protected boolean tryAcquire(int arg) {
    
    
        throw new UnsupportedOperationException();
    }

    /**
     * Attempts to set the state to reflect a release in exclusive
     * mode.
     *
     * <p>This method is always invoked by the thread performing release.
     *
     * <p>The default implementation throws
     * {@link UnsupportedOperationException}.
     *
     * @param arg the release argument. This value is always the one
     *        passed to a release method, or the current state value upon
     *        entry to a condition wait.  The value is otherwise
     *        uninterpreted and can represent anything you like.
     * @return {@code true} if this object is now in a fully released
     *         state, so that any waiting threads may attempt to acquire;
     *         and {@code false} otherwise.
     * @throws IllegalMonitorStateException if releasing would place this
     *         synchronizer in an illegal state. This exception must be
     *         thrown in a consistent fashion for synchronization to work
     *         correctly.
     * @throws UnsupportedOperationException if exclusive mode is not supported
     */
    protected boolean tryRelease(int arg) {
    
    
        throw new UnsupportedOperationException();
    }

    /**
     * 共享式:共享式地获取同步状态。对于独占式同步组件来讲,同一时刻只有一个线程能获取到同步状态,
     * 其他线程都得去排队等待,其待重写的尝试获取同步状态的方法tryAcquire返回值为boolean,这很容易理解;
     * 对于共享式同步组件来讲,同一时刻可以有多个线程同时获取到同步状态,这也是“共享”的意义所在。
     * 本方法待被之类覆盖实现具体逻辑
     *  1.当返回值大于0时,表示获取同步状态成功,同时还有剩余同步状态可供其他线程获取;
     *
     * 2.当返回值等于0时,表示获取同步状态成功,但没有可用同步状态了;

     * 3.当返回值小于0时,表示获取同步状态失败。
     */
    protected int tryAcquireShared(int arg) {
    
    
        throw new UnsupportedOperationException();
    }

    /**
     * Attempts to set the state to reflect a release in shared mode.
     *
     * <p>This method is always invoked by the thread performing release.
     *
     * <p>The default implementation throws
     * {@link UnsupportedOperationException}.
     *
     * @param arg the release argument. This value is always the one
     *        passed to a release method, or the current state value upon
     *        entry to a condition wait.  The value is otherwise
     *        uninterpreted and can represent anything you like.
     * @return {@code true} if this release of shared mode may permit a
     *         waiting acquire (shared or exclusive) to succeed; and
     *         {@code false} otherwise
     * @throws IllegalMonitorStateException if releasing would place this
     *         synchronizer in an illegal state. This exception must be
     *         thrown in a consistent fashion for synchronization to work
     *         correctly.
     * @throws UnsupportedOperationException if shared mode is not supported
     */
    protected boolean tryReleaseShared(int arg) {
    
    
        throw new UnsupportedOperationException();
    }

    /**
     * Returns {@code true} if synchronization is held exclusively with
     * respect to the current (calling) thread.  This method is invoked
     * upon each call to a non-waiting {@link ConditionObject} method.
     * (Waiting methods instead invoke {@link #release}.)
     *
     * <p>The default implementation throws {@link
     * UnsupportedOperationException}. This method is invoked
     * internally only within {@link ConditionObject} methods, so need
     * not be defined if conditions are not used.
     *
     * @return {@code true} if synchronization is held exclusively;
     *         {@code false} otherwise
     * @throws UnsupportedOperationException if conditions are not supported
     */
    protected boolean isHeldExclusively() {
    
    
        throw new UnsupportedOperationException();
    }

    /**
     * Acquires in exclusive mode, ignoring interrupts.  Implemented
     * by invoking at least once {@link #tryAcquire},
     * returning on success.  Otherwise the thread is queued, possibly
     * repeatedly blocking and unblocking, invoking {@link
     * #tryAcquire} until success.  This method can be used
     * to implement method {@link Lock#lock}.
     *
     * @param arg the acquire argument.  This value is conveyed to
     *        {@link #tryAcquire} but is otherwise uninterpreted and
     *        can represent anything you like.
     */
    public final void acquire(int arg) {
    
    
        if (!tryAcquire(arg) &&
                acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }

    /**
     * Acquires in exclusive mode, aborting if interrupted.
     * Implemented by first checking interrupt status, then invoking
     * at least once {@link #tryAcquire}, returning on
     * success.  Otherwise the thread is queued, possibly repeatedly
     * blocking and unblocking, invoking {@link #tryAcquire}
     * until success or the thread is interrupted.  This method can be
     * used to implement method {@link Lock#lockInterruptibly}.
     *
     * @param arg the acquire argument.  This value is conveyed to
     *        {@link #tryAcquire} but is otherwise uninterpreted and
     *        can represent anything you like.
     * @throws InterruptedException if the current thread is interrupted
     */
    public final void acquireInterruptibly(int arg)
            throws InterruptedException {
    
    
        if (Thread.interrupted())
            throw new InterruptedException();
        if (!tryAcquire(arg))
            doAcquireInterruptibly(arg);
    }

    /**
     * Attempts to acquire in exclusive mode, aborting if interrupted,
     * and failing if the given timeout elapses.  Implemented by first
     * checking interrupt status, then invoking at least once {@link
     * #tryAcquire}, returning on success.  Otherwise, the thread is
     * queued, possibly repeatedly blocking and unblocking, invoking
     * {@link #tryAcquire} until success or the thread is interrupted
     * or the timeout elapses.  This method can be used to implement
     * method {@link Lock#tryLock(long, TimeUnit)}.
     *
     * @param arg the acquire argument.  This value is conveyed to
     *        {@link #tryAcquire} but is otherwise uninterpreted and
     *        can represent anything you like.
     * @param nanosTimeout the maximum number of nanoseconds to wait
     * @return {@code true} if acquired; {@code false} if timed out
     * @throws InterruptedException if the current thread is interrupted
     */
    public final boolean tryAcquireNanos(int arg, long nanosTimeout)
            throws InterruptedException {
    
    
        if (Thread.interrupted())
            throw new InterruptedException();
        return tryAcquire(arg) ||
                doAcquireNanos(arg, nanosTimeout);
    }

    /**
     * 释放独占模式持有的锁
     */
    public final boolean release(int arg) {
    
    
        if (tryRelease(arg)) {
    
    //释放一次锁
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);//唤醒后继结点
            return true;
        }
        return false;
    }

    /**
     * 请求获取共享锁
     */
    public final void acquireShared(int arg) {
    
    
        if (tryAcquireShared(arg) < 0)//返回值小于0,获取同步状态失败,排队去;获取同步状态成功,直接返回去干自己的事儿。
            doAcquireShared(arg);
    }

    /**
     * Acquires in shared mode, aborting if interrupted.  Implemented
     * by first checking interrupt status, then invoking at least once
     * {@link #tryAcquireShared}, returning on success.  Otherwise the
     * thread is queued, possibly repeatedly blocking and unblocking,
     * invoking {@link #tryAcquireShared} until success or the thread
     * is interrupted.
     * @param arg the acquire argument.
     * This value is conveyed to {@link #tryAcquireShared} but is
     * otherwise uninterpreted and can represent anything
     * you like.
     * @throws InterruptedException if the current thread is interrupted
     */
    public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
    
    
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }

    /**
     * Attempts to acquire in shared mode, aborting if interrupted, and
     * failing if the given timeout elapses.  Implemented by first
     * checking interrupt status, then invoking at least once {@link
     * #tryAcquireShared}, returning on success.  Otherwise, the
     * thread is queued, possibly repeatedly blocking and unblocking,
     * invoking {@link #tryAcquireShared} until success or the thread
     * is interrupted or the timeout elapses.
     *
     * @param arg the acquire argument.  This value is conveyed to
     *        {@link #tryAcquireShared} but is otherwise uninterpreted
     *        and can represent anything you like.
     * @param nanosTimeout the maximum number of nanoseconds to wait
     * @return {@code true} if acquired; {@code false} if timed out
     * @throws InterruptedException if the current thread is interrupted
     */
    public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)
            throws InterruptedException {
    
    
        if (Thread.interrupted())
            throw new InterruptedException();
        return tryAcquireShared(arg) >= 0 ||
                doAcquireSharedNanos(arg, nanosTimeout);
    }

    /**
     * Releases in shared mode.  Implemented by unblocking one or more
     * threads if {@link #tryReleaseShared} returns true.
     *
     * @param arg the release argument.  This value is conveyed to
     *        {@link #tryReleaseShared} but is otherwise uninterpreted
     *        and can represent anything you like.
     * @return the value returned from {@link #tryReleaseShared}
     */
    public final boolean releaseShared(int arg) {
    
    
        if (tryReleaseShared(arg)) {
    
    
            doReleaseShared();
            return true;
        }
        return false;
    }

    // Queue inspection methods

    /**
     * Queries whether any threads are waiting to acquire. Note that
     * because cancellations due to interrupts and timeouts may occur
     * at any time, a {@code true} return does not guarantee that any
     * other thread will ever acquire.
     *
     * <p>In this implementation, this operation returns in
     * constant time.
     *
     * @return {@code true} if there may be other threads waiting to acquire
     */
    public final boolean hasQueuedThreads() {
    
    
        return head != tail;
    }

    /**
     * Queries whether any threads have ever contended to acquire this
     * synchronizer; that is if an acquire method has ever blocked.
     *
     * <p>In this implementation, this operation returns in
     * constant time.
     *
     * @return {@code true} if there has ever been contention
     */
    public final boolean hasContended() {
    
    
        return head != null;
    }

    /**
     * Returns the first (longest-waiting) thread in the queue, or
     * {@code null} if no threads are currently queued.
     *
     * <p>In this implementation, this operation normally returns in
     * constant time, but may iterate upon contention if other threads are
     * concurrently modifying the queue.
     *
     * @return the first (longest-waiting) thread in the queue, or
     *         {@code null} if no threads are currently queued
     */
    public final Thread getFirstQueuedThread() {
    
    
        // handle only fast path, else relay
        return (head == tail) ? null : fullGetFirstQueuedThread();
    }

    /**
     * Version of getFirstQueuedThread called when fastpath fails
     */
    private Thread fullGetFirstQueuedThread() {
    
    
        /*
         * The first node is normally head.next. Try to get its
         * thread field, ensuring consistent reads: If thread
         * field is nulled out or s.prev is no longer head, then
         * some other thread(s) concurrently performed setHead in
         * between some of our reads. We try this twice before
         * resorting to traversal.
         */
        Node h, s;
        Thread st;
        if (((h = head) != null && (s = h.next) != null &&
                s.prev == head && (st = s.thread) != null) ||
                ((h = head) != null && (s = h.next) != null &&
                        s.prev == head && (st = s.thread) != null))
            return st;

        /*
         * Head's next field might not have been set yet, or may have
         * been unset after setHead. So we must check to see if tail
         * is actually first node. If not, we continue on, safely
         * traversing from tail back to head to find first,
         * guaranteeing termination.
         */

        Node t = tail;
        Thread firstThread = null;
        while (t != null && t != head) {
    
    
            Thread tt = t.thread;
            if (tt != null)
                firstThread = tt;
            t = t.prev;
        }
        return firstThread;
    }

    /**
     * 判断当前线程是否在队列当中
     */
    public final boolean isQueued(Thread thread) {
    
    
        if (thread == null)
            throw new NullPointerException();
        for (Node p = tail; p != null; p = p.prev)
            if (p.thread == thread)
                return true;
        return false;
    }

    /**
     * Returns {@code true} if the apparent first queued thread, if one
     * exists, is waiting in exclusive mode.  If this method returns
     * {@code true}, and the current thread is attempting to acquire in
     * shared mode (that is, this method is invoked from {@link
     * #tryAcquireShared}) then it is guaranteed that the current thread
     * is not the first queued thread.  Used only as a heuristic in
     * ReentrantReadWriteLock.
     */
    final boolean apparentlyFirstQueuedIsExclusive() {
    
    
        Node h, s;
        return (h = head) != null &&
                (s = h.next)  != null &&
                !s.isShared()         &&
                s.thread != null;
    }

    /**
     * 判断当前节点是否有前驱节点
     */
    public final boolean hasQueuedPredecessors() {
    
    
        Node t = tail; // Read fields in reverse initialization order
        Node h = head;
        Node s;
        return h != t &&
                ((s = h.next) == null || s.thread != Thread.currentThread());
    }


    // Instrumentation and monitoring methods

    /**
     * 同步队列长度
     */
    public final int getQueueLength() {
    
    
        int n = 0;
        for (Node p = tail; p != null; p = p.prev) {
    
    
            if (p.thread != null)
                ++n;
        }
        return n;
    }

    /**
     * 获取队列等待thread集合
     */
    public final Collection<Thread> getQueuedThreads() {
    
    
        ArrayList<Thread> list = new ArrayList<Thread>();
        for (Node p = tail; p != null; p = p.prev) {
    
    
            Thread t = p.thread;
            if (t != null)
                list.add(t);
        }
        return list;
    }

    /**
     * 获取独占模式等待thread线程集合
     */
    public final Collection<Thread> getExclusiveQueuedThreads() {
    
    
        ArrayList<Thread> list = new ArrayList<Thread>();
        for (Node p = tail; p != null; p = p.prev) {
    
    
            if (!p.isShared()) {
    
    
                Thread t = p.thread;
                if (t != null)
                    list.add(t);
            }
        }
        return list;
    }

    /**
     * 获取共享模式等待thread集合
     */
    public final Collection<Thread> getSharedQueuedThreads() {
    
    
        ArrayList<Thread> list = new ArrayList<Thread>();
        for (Node p = tail; p != null; p = p.prev) {
    
    
            if (p.isShared()) {
    
    
                Thread t = p.thread;
                if (t != null)
                    list.add(t);
            }
        }
        return list;
    }

    /**
     * Returns a string identifying this synchronizer, as well as its state.
     * The state, in brackets, includes the String {@code "State ="}
     * followed by the current value of {@link #getState}, and either
     * {@code "nonempty"} or {@code "empty"} depending on whether the
     * queue is empty.
     *
     * @return a string identifying this synchronizer, as well as its state
     */
    public String toString() {
    
    
        int s = getState();
        String q  = hasQueuedThreads() ? "non" : "";
        return super.toString() +
                "[State = " + s + ", " + q + "empty queue]";
    }


    // Internal support methods for Conditions

    /**
     * 判断节点是否在同步队列中
     */
    final boolean isOnSyncQueue(Node node) {
    
    
        //快速判断1:节点状态或者节点没有前置节点
        //注:同步队列是有头节点的,而条件队列没有
        if (node.waitStatus == Node.CONDITION || node.prev == null)
            return false;
        //快速判断2:next字段只有同步队列才会使用,条件队列中使用的是nextWaiter字段
        if (node.next != null) // If has successor, it must be on queue
            return true;
        //上面如果无法判断则进入复杂判断
        return findNodeFromTail(node);
    }

    /**
     * Returns true if node is on sync queue by searching backwards from tail.
     * Called only when needed by isOnSyncQueue.
     * @return true if present
     */
    private boolean findNodeFromTail(Node node) {
    
    
        Node t = tail;
        for (;;) {
    
    
            if (t == node)
                return true;
            if (t == null)
                return false;
            t = t.prev;
        }
    }

    /**
     * 将节点从条件队列当中移动到同步队列当中,等待获取锁
     */
    final boolean transferForSignal(Node node) {
    
    
        /*
         * 修改节点信号量状态为0,失败直接返回false
         */
        if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
            return false;

        /*
         * 加入同步队列尾部当中,返回前驱节点
         */
        Node p = enq(node);
        int ws = p.waitStatus;
        //前驱节点不可用 或者 修改信号量状态失败
        if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
            LockSupport.unpark(node.thread); //唤醒当前节点
        return true;
    }

    /**
     * Transfers node, if necessary, to sync queue after a cancelled wait.
     * Returns true if thread was cancelled before being signalled.
     *
     * @param node the node
     * @return true if cancelled before the node was signalled
     */
    final boolean transferAfterCancelledWait(Node node) {
    
    
        if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
    
    
            enq(node);
            return true;
        }
        /*
         * If we lost out to a signal(), then we can't proceed
         * until it finishes its enq().  Cancelling during an
         * incomplete transfer is both rare and transient, so just
         * spin.
         */
        while (!isOnSyncQueue(node))
            Thread.yield();
        return false;
    }

    /**
     * 入参就是新创建的节点,即当前节点
     */
    final int fullyRelease(Node node) {
    
    
        boolean failed = true;
        try {
    
    
            //这里这个取值要注意,获取当前的state并释放,这从另一个角度说明必须是独占锁
            //可以考虑下这个逻辑放在共享锁下面会发生什么?
            int savedState = getState();
            if (release(savedState)) {
    
    
                failed = false;
                return savedState;
            } else {
    
    
                //如果这里释放失败,则抛出异常
                throw new IllegalMonitorStateException();
            }
        } finally {
    
    
            /**
             * 如果释放锁失败,则把节点取消,由这里就能看出来上面添加节点的逻辑中
             * 只需要判断最后一个节点是否被取消就可以了
             */
            if (failed)
                node.waitStatus = Node.CANCELLED;
        }
    }

    // Instrumentation methods for conditions

    /**
     * Queries whether the given ConditionObject
     * uses this synchronizer as its lock.
     *
     * @param condition the condition
     * @return {@code true} if owned
     * @throws NullPointerException if the condition is null
     */
    public final boolean owns(ConditionObject condition) {
    
    
        return condition.isOwnedBy(this);
    }

    /**
     * Queries whether any threads are waiting on the given condition
     * associated with this synchronizer. Note that because timeouts
     * and interrupts may occur at any time, a {@code true} return
     * does not guarantee that a future {@code signal} will awaken
     * any threads.  This method is designed primarily for use in
     * monitoring of the system state.
     *
     * @param condition the condition
     * @return {@code true} if there are any waiting threads
     * @throws IllegalMonitorStateException if exclusive synchronization
     *         is not held
     * @throws IllegalArgumentException if the given condition is
     *         not associated with this synchronizer
     * @throws NullPointerException if the condition is null
     */
    public final boolean hasWaiters(ConditionObject condition) {
    
    
        if (!owns(condition))
            throw new IllegalArgumentException("Not owner");
        return condition.hasWaiters();
    }

    /**
     * 获取条件队列长度
     */
    public final int getWaitQueueLength(ConditionObject condition) {
    
    
        if (!owns(condition))
            throw new IllegalArgumentException("Not owner");
        return condition.getWaitQueueLength();
    }

    /**
     * 获取条件队列当中所有等待的thread集合
     */
    public final Collection<Thread> getWaitingThreads(ConditionObject condition) {
    
    
        if (!owns(condition))
            throw new IllegalArgumentException("Not owner");
        return condition.getWaitingThreads();
    }

    /**
     * 条件对象,实现基于条件的具体行为
     */
    public class ConditionObject implements Condition, java.io.Serializable {
    
    
        private static final long serialVersionUID = 1173984872572414699L;
        /** First node of condition queue. */
        private transient Node firstWaiter;
        /** Last node of condition queue. */
        private transient Node lastWaiter;

        /**
         * Creates a new {@code ConditionObject} instance.
         */
        public ConditionObject() {
    
     }

        // Internal methods

        /**
         * 1.与同步队列不同,条件队列头尾指针是firstWaiter跟lastWaiter
         * 2.条件队列是在获取锁之后,也就是临界区进行操作,因此很多地方不用考虑并发
         */
        private Node addConditionWaiter() {
    
    
            Node t = lastWaiter;
            //如果最后一个节点被取消,则删除队列中被取消的节点
            //至于为啥是最后一个节点后面会分析
            if (t != null && t.waitStatus != Node.CONDITION) {
    
    
                //删除所有被取消的节点
                unlinkCancelledWaiters();
                t = lastWaiter;
            }
            //创建一个类型为CONDITION的节点并加入队列,由于在临界区,所以这里不用并发控制
            Node node = new Node(Thread.currentThread(), Node.CONDITION);
            if (t == null)
                firstWaiter = node;
            else
                t.nextWaiter = node;
            lastWaiter = node;
            return node;
        }

        /**
         * 发信号,通知遍历条件队列当中的节点转移到同步队列当中,准备排队获取锁
         */
        private void doSignal(Node first) {
    
    
            do {
    
    
                if ( (firstWaiter = first.nextWaiter) == null)
                    lastWaiter = null;
                first.nextWaiter = null;
            } while (!transferForSignal(first) && //转移节点
                    (first = firstWaiter) != null);
        }

        /**
         * 通知所有节点移动到同步队列当中,并将节点从条件队列删除
         */
        private void doSignalAll(Node first) {
    
    
            lastWaiter = firstWaiter = null;
            do {
    
    
                Node next = first.nextWaiter;
                first.nextWaiter = null;
                transferForSignal(first);
                first = next;
            } while (first != null);
        }

        /**
         * 删除条件队列当中被取消的节点
         */
        private void unlinkCancelledWaiters() {
    
    
            Node t = firstWaiter;
            Node trail = null;
            while (t != null) {
    
    
                Node next = t.nextWaiter;
                if (t.waitStatus != Node.CONDITION) {
    
    
                    t.nextWaiter = null;
                    if (trail == null)
                        firstWaiter = next;
                    else
                        trail.nextWaiter = next;
                    if (next == null)
                        lastWaiter = trail;
                }
                else
                    trail = t;
                t = next;
            }
        }

        // public methods

        /**
         * 发新号,通知条件队列当中节点到同步队列当中去排队
         *
         */
        public final void signal() {
    
    
            if (!isHeldExclusively())//节点不能已经持有独占锁
                throw new IllegalMonitorStateException();
            Node first = firstWaiter;
            if (first != null)
                /**
                 * 发信号通知条件队列的节点准备到同步队列当中去排队
                 */
                doSignal(first);
        }

        /**
         * 唤醒所有条件队列的节点转移到同步队列当中
         */
        public final void signalAll() {
    
    
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            Node first = firstWaiter;
            if (first != null)
                doSignalAll(first);
        }

        /**
         * Implements uninterruptible condition wait.
         * <ol>
         * <li> Save lock state returned by {@link #getState}.
         * <li> Invoke {@link #release} with saved state as argument,
         *      throwing IllegalMonitorStateException if it fails.
         * <li> Block until signalled.
         * <li> Reacquire by invoking specialized version of
         *      {@link #acquire} with saved state as argument.
         * </ol>
         */
        public final void awaitUninterruptibly() {
    
    
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            boolean interrupted = false;
            while (!isOnSyncQueue(node)) {
    
    
                LockSupport.park(this);
                if (Thread.interrupted())
                    interrupted = true;
            }
            if (acquireQueued(node, savedState) || interrupted)
                selfInterrupt();
        }

        /*
         * For interruptible waits, we need to track whether to throw
         * InterruptedException, if interrupted while blocked on
         * condition, versus reinterrupt current thread, if
         * interrupted while blocked waiting to re-acquire.
         */

        /** 该模式表示在退出等待时重新中断 */
        private static final int REINTERRUPT =  1;
        /** 异常中断 */
        private static final int THROW_IE    = -1;

        /**
         * 这里的判断逻辑是:
         * 1.如果现在不是中断的,即正常被signal唤醒则返回0
         * 2.如果节点由中断加入同步队列则返回THROW_IE,由signal加入同步队列则返回REINTERRUPT
         */
        private int checkInterruptWhileWaiting(Node node) {
    
    
            return Thread.interrupted() ?
                    (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
                    0;
        }

        /**
         * 根据中断时机选择抛出异常或者设置线程中断状态
         */
        private void reportInterruptAfterWait(int interruptMode)
                throws InterruptedException {
    
    
            if (interruptMode == THROW_IE)
                throw new InterruptedException();
            else if (interruptMode == REINTERRUPT)
                selfInterrupt();
        }

        /**
         * 加入条件队列等待,条件队列入口
         */
        public final void await() throws InterruptedException {
    
    
            //如果当前线程被中断则直接抛出异常
            if (Thread.interrupted())
                throw new InterruptedException();
            //把当前节点加入条件队列
            Node node = addConditionWaiter();
            //释放掉已经获取的独占锁资源
            int savedState = fullyRelease(node);
            int interruptMode = 0;
            //如果不在同步队列中则不断挂起
            while (!isOnSyncQueue(node)) {
    
    
                LockSupport.park(this);
                //这里被唤醒可能是正常的signal操作也可能是中断
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            /**
             * 走到这里说明节点已经条件满足被加入到了同步队列中或者中断了
             * 这个方法很熟悉吧?就跟独占锁调用同样的获取锁方法,从这里可以看出条件队列只能用于独占锁
             * 在处理中断之前首先要做的是从同步队列中成功获取锁资源
             */
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            //走到这里说明已经成功获取到了独占锁,接下来就做些收尾工作
            //删除条件队列中被取消的节点
            if (node.nextWaiter != null) // clean up if cancelled
                unlinkCancelledWaiters();
            //根据不同模式处理中断
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
        }

        /**
         * Implements timed condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException.
         * <li> Save lock state returned by {@link #getState}.
         * <li> Invoke {@link #release} with saved state as argument,
         *      throwing IllegalMonitorStateException if it fails.
         * <li> Block until signalled, interrupted, or timed out.
         * <li> Reacquire by invoking specialized version of
         *      {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw InterruptedException.
         * </ol>
         */
        public final long awaitNanos(long nanosTimeout)
                throws InterruptedException {
    
    
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            final long deadline = System.nanoTime() + nanosTimeout;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
    
    
                if (nanosTimeout <= 0L) {
    
    
                    transferAfterCancelledWait(node);
                    break;
                }
                if (nanosTimeout >= spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
                nanosTimeout = deadline - System.nanoTime();
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return deadline - System.nanoTime();
        }

        /**
         * Implements absolute timed condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException.
         * <li> Save lock state returned by {@link #getState}.
         * <li> Invoke {@link #release} with saved state as argument,
         *      throwing IllegalMonitorStateException if it fails.
         * <li> Block until signalled, interrupted, or timed out.
         * <li> Reacquire by invoking specialized version of
         *      {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw InterruptedException.
         * <li> If timed out while blocked in step 4, return false, else true.
         * </ol>
         */
        public final boolean awaitUntil(Date deadline)
                throws InterruptedException {
    
    
            long abstime = deadline.getTime();
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            boolean timedout = false;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
    
    
                if (System.currentTimeMillis() > abstime) {
    
    
                    timedout = transferAfterCancelledWait(node);
                    break;
                }
                LockSupport.parkUntil(this, abstime);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return !timedout;
        }

        /**
         * Implements timed condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException.
         * <li> Save lock state returned by {@link #getState}.
         * <li> Invoke {@link #release} with saved state as argument,
         *      throwing IllegalMonitorStateException if it fails.
         * <li> Block until signalled, interrupted, or timed out.
         * <li> Reacquire by invoking specialized version of
         *      {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw InterruptedException.
         * <li> If timed out while blocked in step 4, return false, else true.
         * </ol>
         */
        public final boolean await(long time, TimeUnit unit)
                throws InterruptedException {
    
    
            long nanosTimeout = unit.toNanos(time);
            if (Thread.interrupted())
                throw new InterruptedException();
            Node node = addConditionWaiter();
            int savedState = fullyRelease(node);
            final long deadline = System.nanoTime() + nanosTimeout;
            boolean timedout = false;
            int interruptMode = 0;
            while (!isOnSyncQueue(node)) {
    
    
                if (nanosTimeout <= 0L) {
    
    
                    timedout = transferAfterCancelledWait(node);
                    break;
                }
                if (nanosTimeout >= spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                    break;
                nanosTimeout = deadline - System.nanoTime();
            }
            if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode = REINTERRUPT;
            if (node.nextWaiter != null)
                unlinkCancelledWaiters();
            if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
            return !timedout;
        }

        //  support for instrumentation

        /**
         * Returns true if this condition was created by the given
         * synchronization object.
         *
         * @return {@code true} if owned
         */
        final boolean isOwnedBy(AbstractQueuedSynchronizer sync) {
    
    
            return sync == AbstractQueuedSynchronizer.this;
        }

        /**
         * Queries whether any threads are waiting on this condition.
         * Implements {@link AbstractQueuedSynchronizer#hasWaiters(ConditionObject)}.
         *
         * @return {@code true} if there are any waiting threads
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *         returns {@code false}
         */
        protected final boolean hasWaiters() {
    
    
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
    
    
                if (w.waitStatus == Node.CONDITION)
                    return true;
            }
            return false;
        }

        /**
         * Returns an estimate of the number of threads waiting on
         * this condition.
         * Implements {@link AbstractQueuedSynchronizer#getWaitQueueLength(ConditionObject)}.
         *
         * @return the estimated number of waiting threads
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *         returns {@code false}
         */
        protected final int getWaitQueueLength() {
    
    
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            int n = 0;
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
    
    
                if (w.waitStatus == Node.CONDITION)
                    ++n;
            }
            return n;
        }

        /**
         * 得到同步队列当中所有在等待的Thread集合
         */
        protected final Collection<Thread> getWaitingThreads() {
    
    
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            ArrayList<Thread> list = new ArrayList<Thread>();
            for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
    
    
                if (w.waitStatus == Node.CONDITION) {
    
    
                    Thread t = w.thread;
                    if (t != null)
                        list.add(t);
                }
            }
            return list;
        }
    }

    /**
     * Setup to support compareAndSet. We need to natively implement
     * this here: For the sake of permitting future enhancements, we
     * cannot explicitly subclass AtomicInteger, which would be
     * efficient and useful otherwise. So, as the lesser of evils, we
     * natively implement using hotspot intrinsics API. And while we
     * are at it, we do the same for other CASable fields (which could
     * otherwise be done with atomic field updaters).
     * unsafe魔法类,直接绕过虚拟机内存管理机制,修改内存
     */
    private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long stateOffset;
    private static final long headOffset;
    private static final long tailOffset;
    private static final long waitStatusOffset;
    private static final long nextOffset;

    static {
    
    
        try {
    
    
            stateOffset = unsafe.objectFieldOffset
                    (AbstractQueuedSynchronizer.class.getDeclaredField("state"));
            headOffset = unsafe.objectFieldOffset
                    (AbstractQueuedSynchronizer.class.getDeclaredField("head"));
            tailOffset = unsafe.objectFieldOffset
                    (AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
            waitStatusOffset = unsafe.objectFieldOffset
                    (Node.class.getDeclaredField("waitStatus"));
            nextOffset = unsafe.objectFieldOffset
                    (Node.class.getDeclaredField("next"));

        } catch (Exception ex) {
    
     throw new Error(ex); }
    }

    /**
     * CAS 修改头部节点指向. 并发入队时使用.
     */
    private final boolean compareAndSetHead(Node update) {
    
    
        return unsafe.compareAndSwapObject(this, headOffset, null, update);
    }

    /**
     * CAS 修改尾部节点指向. 并发入队时使用.
     */
    private final boolean compareAndSetTail(Node expect, Node update) {
    
    
        return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
    }

    /**
     * CAS 修改信号量状态.
     */
    private static final boolean compareAndSetWaitStatus(Node node,
                                                         int expect,
                                                         int update) {
    
    
        return unsafe.compareAndSwapInt(node, waitStatusOffset,
                expect, update);
    }

    /**
     * 修改节点的后继指针.
     */
    private static final boolean compareAndSetNext(Node node,
                                                   Node expect,
                                                   Node update) {
    
    
        return unsafe.compareAndSwapObject(node, nextOffset, expect, update);
    }
}

猜你喜欢

转载自blog.csdn.net/qq_39513430/article/details/109513139