Android音频子系统(二)------threadLoop_write数据写入流程

你好!这里是风筝的博客,

欢迎和我一起交流。


之前的文章:Android音频子系统(一)------openOutput打开流程
讲述了Output打开过程,那么接下来它是何时如何写入数据的呢?

这里以Android N为例

//@Threads.cpp
bool AudioFlinger::PlaybackThread::threadLoop()
{
    
    
	//......
	ret = threadLoop_write();
	//......
}

threadLoop还是比较太复杂的,我把他放在了这里:Android音频子系统(五)------AudioFlinger处理流程

简单看下PlaybackThread::threadLoop_write

//@Threads.cpp
ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
{
    
    
     // If an NBAIO sink is present, use it to write the normal mixer's submix
     if (mNormalSink != 0) {
    
    
         ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
     // otherwise use the HAL / AudioStreamOut directly
     } else {
    
    
         // Direct output and offload threads
         // FIXME We should have an implementation of timestamps for direct output threads.
         // They are used e.g for multichannel PCM playback over HDMI.
         bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
     }
}

从注释可知,如果mNormalSink有被赋值,那么会调用mNormalSink->write,否则就是调用mOutput->write。
所以这里分两种情况:
1.mNormalSink被赋值的情况
2.Direct output and offload 的情况

我们看下mNormalSink的情况吧。

1.mNormalSink被赋值

正常情况下,mixer的场景下mNormalSink肯定是会被赋值的

//@Threads.h
class PlaybackThread : public ThreadBase {
    
    
private:
    // The HAL output sink is treated as non-blocking, but current implementation is blocking
    sp<NBAIO_Sink>          mOutputSink;
    // If a fast mixer is present, the blocking pipe sink, otherwise clear
    sp<NBAIO_Sink>          mPipeSink;
    // The current sink for the normal mixer to write it's (sub)mix, mOutputSink or mPipeSink
    sp<NBAIO_Sink>          mNormalSink;
}

//@NBAIO.h
class NBAIO_Sink : public NBAIO_Port {
    
    
    virtual ssize_t write(const void *buffer, size_t count) = 0;
}

mNormalSink是NBAIO_Sink类型指针,而NBAIO_Sink ->write又是纯虚函数,我们查找他的write实现,就得先看下mNormalSink被赋值给了什么。

通过结合代码和搜索mNormalSink,发现在MixerThread的构造函数中有进行赋值(MixerThread继承自PlaybackThread):

//@Threads.cpp
static const enum {
    
    
    FastMixer_Never,    // never initialize or use: for debugging only
    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
                        // normal mixer multiplier is 1
    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
                        // multiplier is calculated based on min & max normal mixer buffer size
    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
                        // multiplier is calculated based on min & max normal mixer buffer size
} kUseFastMixer = FastMixer_Static;

AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
        audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),//这里构造了PlaybackThread
        // mAudioMixer below
        // mFastMixer below
        mFastMixerFutex(0),
        mMasterMono(false)
        // mOutputSink below
        // mPipeSink below
        // mNormalSink below
{
    
    
    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
    mOutputSink = new AudioStreamOutSink(output->stream);
    // initialize fast mixer depending on configuration
    bool initFastMixer;
    switch (kUseFastMixer) {
    
    //kUseFastMixer = FastMixer_Static
    case FastMixer_Never:
        initFastMixer = false;
        break;
    case FastMixer_Always:
        initFastMixer = true;
        break;
    case FastMixer_Static:
    case FastMixer_Dynamic:
        initFastMixer = mFrameCount < mNormalFrameCount;
        break;
    }
    
    MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
    mPipeSink = monoPipe;
    
    // create fast mixer and configure it initially with just one fast track for our submix
    mFastMixer = new FastMixer();
    // start the fast mixer
    mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);

    switch (kUseFastMixer) {
    
    //kUseFastMixer = FastMixer_Static
    case FastMixer_Never:
    case FastMixer_Dynamic:
        mNormalSink = mOutputSink;
        break;
    case FastMixer_Always:
        mNormalSink = mPipeSink;
        break;
    case FastMixer_Static:
        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
        break;
    }
}

这里还涉及到了fastMixer,这里不是本文重点,先不表。
头疼,这里mNormalSink 的情况又分两组,默认情况下kUseFastMixer=FastMixer_Static,initFastMixer = mFrameCount < mNormalFrameCount;

所以我们这里讨论两种情况:
1.mNormalSink = mOutputSink;
2.mNormalSink = mPipeSink;

1.1 mNormalSink = mOutputSink

看下mOutputSink的由来:mOutputSink = new AudioStreamOutSink(output->stream);

//@AudioStreamOutSink.h
class AudioStreamOutSink : public NBAIO_Sink {
    
    
    sp<StreamOutHalInterface> mStream;
}

//@AudioStreamOutSink.cpp
AudioStreamOutSink::AudioStreamOutSink(sp<StreamOutHalInterface> stream) :
        NBAIO_Sink(),
        mStream(stream),
        mStreamBufferSizeBytes(0)
{
    
    
    ALOG_ASSERT(stream != 0);
}

这里将mStream初始化为入参stream,也就是传入的output->stream。
也就是说,当mNormalSink = mOutputSink时,PlaybackThread::threadLoop_write里的mNormalSink->write就是AudioStreamOutSink::write

//@AudioStreamOutSink.cpp
ssize_t AudioStreamOutSink::write(const void *buffer, size_t count)
{
    
    
    ssize_t ret = mStream->write(mStream, buffer, count * mFrameSize);
    if (ret > 0) {
    
    
        ret /= mFrameSize;
        mFramesWritten += ret;
    } else {
    
    
        // FIXME verify HAL implementations are returning the correct error codes e.g. WOULD_BLOCK
    }
    return ret;
}

那么这里的mStream->write又是调用到哪里呢?看类型也知道StreamOutHalInterface肯定是和hal相关。
刚刚我们说了AudioStreamOutSink的构造函数中,将传参output->stream初始化给了mStream,那么我们看下output->stream的由来:
output由MixerThread构造函数传入,那么MixerThread是在那里被new的呢?

sp<AudioFlinger::PlaybackThread> AudioFlinger::openOutput_l(audio_module_handle_t module,
                                                            audio_io_handle_t *output,
                                                            audio_config_t *config,
                                                            audio_devices_t devices,
                                                            const String8& address,
                                                            audio_output_flags_t flags)
{
    
    
    AudioStreamOut *outputStream = NULL;
    status_t status = outHwDev->openOutputStream(
            &outputStream,
            *output,
            devices,
            flags,
            config,
            address.string());
            
    if (status == NO_ERROR) {
    
    
        PlaybackThread *thread;
        if (flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD) {
    
    
            thread = new OffloadThread(this, outputStream, *output, devices, mSystemReady);
        } else if ((flags & AUDIO_OUTPUT_FLAG_DIRECT)
                || !isValidPcmSinkFormat(config->format)
                || !isValidPcmSinkChannelMask(config->channel_mask)) {
    
    
            thread = new DirectOutputThread(this, outputStream, *output, devices, mSystemReady);
        } else {
    
    
            thread = new MixerThread(this, outputStream, *output, devices, mSystemReady);//这里!!!
        }
        mPlaybackThreads.add(*output, thread);
    }
}

之前的文章讲open流程有稍微提到过:Android音频子系统(一)------openOutput打开流程
这里是将outHwDev->openOutputStream的实参&outputStream,给了new MixerThread:

//@AudioHwDevice.cpp
status_t AudioHwDevice::openOutputStream(
        AudioStreamOut **ppStreamOut,
        audio_io_handle_t handle,
        audio_devices_t devices,
        audio_output_flags_t flags,
        struct audio_config *config,
        const char *address)
{
    
    
	//创建AudioStreamOut音频输出流
    AudioStreamOut *outputStream = new AudioStreamOut(this, flags);
    *ppStreamOut = outputStream;//这里做了赋值,也就是&outputStream
}

所以我们可知,outputStream是一个输出流,也就是说AudioStreamOutSink::write里的mStream->write,就是AudioStreamOut::write

//@AudioStreamOut.h
class AudioStreamOut {
    
    
public:
    audio_stream_out_t *stream;
}

//@AudioStreamOut.cpp
ssize_t AudioStreamOut::write(const void *buffer, size_t numBytes)
{
    
    
    ALOG_ASSERT(stream != NULL);
    ssize_t bytesWritten = stream->write(stream, buffer, numBytes);
    if (bytesWritten > 0 && mHalFrameSize > 0) {
    
    
        mFramesWritten += bytesWritten / mHalFrameSize;
    }
    return bytesWritten;
}

这里明显看到stream->write,stream是AudioStreamOut类成员,又是在哪里赋值的呢?

status_t AudioStreamOut::open(
        audio_io_handle_t handle,
        audio_devices_t devices,
        struct audio_config *config,
        const char *address)
{
    
    
    audio_stream_out_t *outStream;

    int status = hwDev()->open_output_stream(
            hwDev(),
            handle,
            devices,
            customFlags,
            config,
            &outStream,
            address);

    if (status == NO_ERROR) {
    
    
        stream = outStream;
    }
}

这里滴流程是真滴多,open的时候stream会被赋值:stream = outStream,这里也就到了hal层了:adev->hw_device.open_output_stream = adev_open_output_stream;到hal层也就懒得细贴代码了。

总结下就是mNormalSink = mOutputSink时,mNormalSink->write最后就调用到hal层的write操作了。

1.2 mNormalSink = mPipeSink

那么如果是mNormalSink = mPipeSink;的情况呢?这个情况就比较简单了,
MixerThread构造函数里面:

MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
mPipeSink = moniPipe

所以mNormalSink->write也就是MonoPipe::write

ssize_t MonoPipe::write(const void *buffer, size_t count)
{
    
    
}

这部分说实话没看懂,Android怎么这么复杂,先留着吧。。。。。。

2.Direct output and offload

Direct output and offload的情况下:
一般的HDMI设备就是走的Direct output了,我们分析下

//AudioStreamOut	*mOutput;
bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);

我们在本文件搜索下mOutput是在哪被初始化的,结果找到了:

AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
                                             AudioStreamOut* output,
                                             audio_io_handle_t id,
                                             audio_devices_t device,
                                             type_t type,
                                             bool systemReady)
    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
        //......
        mActiveTracksGeneration(0),
        // mStreamTypes[] initialized in constructor body
        mOutput(output),//就是这里初始化了
        mLastWriteTime(-1), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
        mMixerStatus(MIXER_IDLE),
        //......
{
    
    
}

在PlaybackThread的构造函数里面,会初始化mOutput为output,output是PlaybackThread构造函数的入参,那么它是在哪里被创建的呢?
一般是在播放线程实例,例如OffloadThread或者DirectOutputThread或者MixerThread的构造函数中创建的,MixerThread比较常见,文章开头也描述有,就以MixerThread分析:

AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
        audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),//就是这里了
        // mAudioMixer below
        // mFastMixer below
        mFastMixerFutex(0),
        mMasterMono(false)
        // mOutputSink below
        // mPipeSink below
        // mNormalSink below
{
    
    
}

继续往下追踪,PlaybackThread(audioFlinger, output, id, device, type, systemReady)中output,也就是MixerThread中的传参output,又是哪里传入的呢?

//AudioFlinger.cpp
sp<AudioFlinger::ThreadBase> AudioFlinger::openOutput_l(audio_module_handle_t module,
                                                            audio_io_handle_t *output,
                                                            audio_config_t *config,
                                                            audio_devices_t devices,
                                                            const String8& address,
                                                            audio_output_flags_t flags)
{
    
    
	//这里outputStream的初始化
    AudioStreamOut *outputStream = NULL;
    status_t status = outHwDev->openOutputStream(
            &outputStream,
            *output,
            devices,
            flags,
            config,
            address.string());
            
    if (status == NO_ERROR) {
    
    

        PlaybackThread *thread;
        if (flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD) {
    
    
            thread = new OffloadThread(this, outputStream, *output, devices, mSystemReady);
            ALOGV("openOutput_l() created offload output: ID %d thread %p", *output, thread);
        } else if ((flags & AUDIO_OUTPUT_FLAG_DIRECT)
                || !isValidPcmSinkFormat(config->format)
                || !isValidPcmSinkChannelMask(config->channel_mask)) {
    
    
            thread = new DirectOutputThread(this, outputStream, *output, devices, mSystemReady);
            ALOGV("openOutput_l() created direct output: ID %d thread %p", *output, thread);
        } else {
    
    
        	//创建MixerThread线程
            thread = new MixerThread(this, outputStream, *output, devices, mSystemReady);
            ALOGV("openOutput_l() created mixer output: ID %d thread %p", *output, thread);
        }
        mPlaybackThreads.add(*output, thread);
        return thread;
    }
}

又到了我们熟悉的openOutput_l函数:Android音频子系统(一)------openOutput打开流程

所以我们可知,mOutput->write也就是AudioStreamOut::write了,这里write就可以往底层写入数据。

不过…

其实也不要那么麻烦分析,mOutput是class PlaybackThread 的成员,类型是AudioStreamOut:

class PlaybackThread : public ThreadBase {
    
    
	AudioStreamOut                  *mOutput;
}

所以也可以得知mOutput->write也就是AudioStreamOut::write了

ssize_t AudioStreamOut::write(const void* buffer, size_t bytes)
{
    
    
    AudioOutputList::iterator I;
    bool checkDMAStart = false;
    bool hasActiveOutputs = false;
    {
    
    
        Mutex::Autolock _l(mRoutingLock);
        for (I = mPhysOutputs.begin(); I != mPhysOutputs.end(); ++I) {
    
    
            if (AudioOutput::PRIMED == (*I)->getState())
                checkDMAStart = true;

            if ((*I)->getState() == AudioOutput::ACTIVE)
                hasActiveOutputs = true;
        }
    }
    if (checkDMAStart) {
    
    
        int64_t junk;
        getNextWriteTimestamp_internal(&junk);
    }

    // We always call processOneChunk on the outputs, as it is the
    // tick for their state machines.
    {
    
    
        Mutex::Autolock _l(mRoutingLock);
        for (I = mPhysOutputs.begin(); I != mPhysOutputs.end(); ++I) {
    
    
            (*I)->processOneChunk((uint8_t *)buffer, bytes, hasActiveOutputs, mInputFormat);
        }

        // If we don't actually have any physical outputs to write to, just sleep
        // for the proper amount of time in order to simulate the throttle that writing
        // to the hardware would impose.
        uint32_t framesWritten = bytes / mInputFrameSize;
        finishedWriteOp(framesWritten, (0 == mPhysOutputs.size()));
    }
}

因为是Direct output直接输出的,里面先判断DMA开始了没,接着判断有没有active outputs。
之后调用(*I)->processOneChunk进行处理:

void AudioOutput::processOneChunk(const uint8_t* data, size_t len,
                                  bool hasActiveOutputs, audio_format_t format) {
    
    
        doPCMWrite(data, len, format);//写入pcm数据
}

最后也是调用到pcm_write,整条路就打通了。

猜你喜欢

转载自blog.csdn.net/Guet_Kite/article/details/117742950