从零开始的openGL--cs游戏(11)3种常用shader

纯材质

#version 430 core
layout(location = 0) in vec3 aPos;
layout(location = 1) in vec2 aTexCoord;
layout(std140 , binding = 0) uniform PV
{
    
    
	mat4 projection;
	mat4 view;
};
out vec2 TexCoord;

uniform mat4 model;

void main()
{
    
    
	gl_Position = projection * view * model * vec4(aPos, 1.0);
	TexCoord = vec2(aTexCoord.x, aTexCoord.y);
}

-----------------------
#version 430 core
out vec4 FragColor;

in vec2 TexCoord;
uniform sampler2D albedoMap;
void main()
{
    
    
	// linearly interpolate between both textures (80% container, 20% awesomeface)
	FragColor = vec4(texture(albedoMap, TexCoord).rgb * 0.5,1.0);
}

高光

#version 420 core
layout(location = 0) in vec3 aPos;
layout(location = 2) in vec3 aNormal;
layout(location = 1) in vec2 aTexCoord;
layout(std140 , binding = 0) uniform PV
{
    
    
	mat4 projection;
	mat4 view;
};
out vec3 FragPos;
out vec3 Normal;
out vec2 TexCoord;

uniform mat4 model;

void main()
{
    
    
	gl_Position = projection * view * model * vec4(aPos, 1.0);
	FragPos = vec3(model * vec4(aPos, 1.0));
	Normal = mat3(transpose(inverse(model))) * aNormal;  
	TexCoord = vec2(aTexCoord.x, aTexCoord.y);
}
-------------
#version 420 core
out vec4 FragColor;

layout(std140 , binding = 1) uniform BaseLight
{
    
    
	vec3 lightDir;
	vec3 color;
	vec3 ambient;
    float gloss;
};
layout(std140 , binding = 2) uniform BaseView
{
    
    
	vec3 viewPos;
};

in vec3 FragPos;  
in vec3 Normal;  
in vec2 TexCoords;
uniform sampler2D albedoMap;
void main()
{
    
    
	// linearly interpolate between both textures (80% container, 20% awesomeface)
	//FragColor = vec4(texture(albedoMap, TexCoord).rgb ,1.0);

	// ambient
    vec3 ambient = BaseLight.ambient * texture(albedoMap, TexCoords).rgb;
  	
    // diffuse 
    vec3 norm = normalize(Normal);
    float diff = max(dot(norm, BaseLight.lightDir), 0.0);
    vec3 diffuse = BaseLight.color * diff * texture(albedoMap, TexCoords).rgb;  
    
    // specular
    vec3 viewDir = normalize(viewPos - FragPos);
    vec3 halfDir = normalize(viewDir + BaseLight.lightDir);  
    float spec = pow(max(dot(norm, halfDir), 0.0), BaseLight.gloss);
    vec3 specular = BaseLight.color * spec * texture(albedoMap, TexCoords).rgb;  
        
    vec3 result = ambient + diffuse + specular;
    // HDR tonemapping
    result = result / (result + vec3(1.0));
    // gamma correct
    result = pow(result, vec3(1.0/2.2));
    FragColor = vec4(result, 1.0);
}

高质量

#version 430 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
layout (location = 2) in vec2 aTexCoords;
layout (location = 3) in vec3 Tangent;
layout (location = 4) in vec3 Bitangent;
layout (location = 5) in ivec4 BoneIDs;
layout (location = 6) in vec4 Weights;

out vec2 TexCoords;
out vec3 WorldPos;
out vec3 Normal;

layout(std140 , binding = 0) uniform PV
{
    
    
	mat4 projection;
	mat4 view;
};
uniform mat4 model;

const int MAX_BONES = 100; // Max number of bones
uniform mat4 gBones[MAX_BONES]; // Bone transformations 
void main()
{
    
    
    mat4 BoneTransform = gBones[ BoneIDs[0] ] * Weights[0];
	BoneTransform += gBones[ BoneIDs[1] ] * Weights[1];
    BoneTransform += gBones[ BoneIDs[2] ] * Weights[2];
    BoneTransform += gBones[ BoneIDs[3] ] * Weights[3];

	// Transformed vertex position 
	vec4 tPos = BoneTransform * vec4(aPos, 1.0);
    TexCoords = aTexCoords;
    WorldPos = vec3(model * tPos);
    Normal = mat3(model) * aNormal;   

    //gl_Position =  projection * view * vec4(WorldPos, 1.0);
    gl_Position =  projection * view * model * tPos;
}
------------------------
#version 430 core
out vec4 FragColor;
in vec2 TexCoords;
in vec3 WorldPos;
in vec3 Normal;

// material parameters
uniform sampler2D albedoMap;
uniform sampler2D specularMap;
uniform sampler2D normalMap;
uniform sampler2D heightMap;
uniform sampler2D aoMap;
uniform sampler2D metallicMap;
uniform sampler2D roughnessMap;

layout(std140 , binding = 1) uniform BaseLight
{
    
    
	vec3 lightDir;
	vec3 color;
	vec3 ambient;
    float gloss;
};
layout(std140 , binding = 2) uniform BaseView
{
    
    
	vec3 viewPos;
};
// lights
uniform vec3 lightPositions[1];
uniform vec3 lightColors[1];

uniform vec3 camPos;

const float PI = 3.14159265359;
// ----------------------------------------------------------------------------
// Easy trick to get tangent-normals to world-space to keep PBR code simplified.
// Don't worry if you don't get what's going on; you generally want to do normal 
// mapping the usual way for performance anways; I do plan make a note of this 
// technique somewhere later in the normal mapping tutorial.
vec3 getNormalFromMap()
{
    
    
    vec3 tangentNormal = texture(normalMap, TexCoords).xyz * 2.0 - 1.0;

    vec3 Q1  = dFdx(WorldPos);
    vec3 Q2  = dFdy(WorldPos);
    vec2 st1 = dFdx(TexCoords);
    vec2 st2 = dFdy(TexCoords);

    vec3 N   = normalize(Normal);
    vec3 T  = normalize(Q1*st2.t - Q2*st1.t);
    vec3 B  = -normalize(cross(N, T));
    mat3 TBN = mat3(T, B, N);

    return normalize(TBN * tangentNormal);
}
// ----------------------------------------------------------------------------
float DistributionGGX(vec3 N, vec3 H, float roughness)
{
    
    
    float a = roughness*roughness;
    float a2 = a*a;
    float NdotH = max(dot(N, H), 0.0);
    float NdotH2 = NdotH*NdotH;

    float nom   = a2;
    float denom = (NdotH2 * (a2 - 1.0) + 1.0);
    denom = PI * denom * denom;

    return nom / denom;
}
// ----------------------------------------------------------------------------
float GeometrySchlickGGX(float NdotV, float roughness)
{
    
    
    float r = (roughness + 1.0);
    float k = (r*r) / 8.0;

    float nom   = NdotV;
    float denom = NdotV * (1.0 - k) + k;

    return nom / denom;
}
// ----------------------------------------------------------------------------
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
    
    
    float NdotV = max(dot(N, V), 0.0);
    float NdotL = max(dot(N, L), 0.0);
    float ggx2 = GeometrySchlickGGX(NdotV, roughness);
    float ggx1 = GeometrySchlickGGX(NdotL, roughness);

    return ggx1 * ggx2;
}
// ----------------------------------------------------------------------------
vec3 fresnelSchlick(float cosTheta, vec3 F0)
{
    
    
    return F0 + (1.0 - F0) * pow(clamp(1.0 - cosTheta, 0.0, 1.0), 5.0);
}
// ----------------------------------------------------------------------------
void main()
{
    
    	
    vec3 albedo     = pow(texture(albedoMap, TexCoords).rgb, vec3(2.2));
    float metallic  = texture(metallicMap, TexCoords).r;
    float roughness = texture(roughnessMap, TexCoords).r;
    float ao        = texture(aoMap, TexCoords).r;
    vec3 N = getNormalFromMap();
    vec3 V = normalize(camPos - WorldPos);

    // calculate reflectance at normal incidence; if dia-electric (like plastic) use F0 
    // of 0.04 and if it's a metal, use the albedo color as F0 (metallic workflow)    
    vec3 F0 = vec3(0.04); 
    F0 = mix(F0, albedo, metallic);

    // reflectance equation
    vec3 Lo = vec3(0.0);
    for(int i = 0; i < 1; ++i) 
    {
    
    
        // calculate per-light radiance
        vec3 L = normalize(lightPositions[i] - WorldPos);
        vec3 H = normalize(V + L);
        float distance = length(lightPositions[i] - WorldPos);
        float attenuation = 1.0 / (distance * distance);
        vec3 radiance = lightColors[i] * 1;
        
        // Cook-Torrance BRDF
        float NDF = DistributionGGX(N, H, roughness);   
        float G   = GeometrySmith(N, V, L, roughness);      
        vec3 F    = fresnelSchlick(max(dot(H, V), 0.0), F0);
           
        vec3 numerator    = NDF * G * F; 
        float denominator = 4 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.0001; // + 0.0001 to prevent divide by zero
        vec3 specular = numerator / denominator;
        
        // kS is equal to Fresnel
        vec3 kS = F;
        // for energy conservation, the diffuse and specular light can't
        // be above 1.0 (unless the surface emits light); to preserve this
        // relationship the diffuse component (kD) should equal 1.0 - kS.
        vec3 kD = vec3(1.0) - kS;
        // multiply kD by the inverse metalness such that only non-metals 
        // have diffuse lighting, or a linear blend if partly metal (pure metals
        // have no diffuse light).
        kD *= 1.0 - metallic;	  

        // scale light by NdotL
        float NdotL = max(dot(N, L), 0.0);        

        // add to outgoing radiance Lo
        Lo += (kD * albedo / PI + specular) * radiance * NdotL;  // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again
    }   
    
    // ambient lighting (note that the next IBL tutorial will replace 
    // this ambient lighting with environment lighting).
    vec3 ambient = vec3(0.03) * albedo * ao;
    
    vec3 color = ambient + Lo;

    // HDR tonemapping
    color = color / (color + vec3(1.0));
    // gamma correct
    color = pow(color, vec3(1.0/2.2));
    FragColor = vec4(color, 1.0);
}

猜你喜欢

转载自blog.csdn.net/qq_41041725/article/details/121959125