Android图形系统之HWComposer


1、HWC

HWChwcomposer)硬件组合抽象层,是Android中进行窗口(Layer)合成和显示的HAL层模块,其实现是特定于设备的,而且通常由显示设备制造商 (OEM)完成,为SurfaceFlinger服务提供硬件支持。

1.1 HWC作用

SurfaceFlinger可以使用OpenGL ES合成Layer,这需要占用并消耗GPU资源。大多数GPU都没有针对图层合成进行优化,因此当SurfaceFlinger通过GPU合成图层时,应用程序无法使用GPU进行自己的渲染。而HWC通过硬件设备进行图层合成,可以减轻GPU的合成压力。

1.2 Overlay

HWComposer机制最开的目的是为了替代Overlay的。Overlay技术:Overlay(覆盖)是一种数字视频的显示技术,它允许数字信号不经过显示芯片处理,而直接通过显存输出到显示器屏幕上。Overlay显示模式最大的用途在于优化视频播放。由于不同的视频有不同基准色调、亮度、对比度和饱和度,对于不同的电脑、不同的视频文件,为了获得最好的显示效果就需要对各种显示属性进行调节,普通显示模式显然无法胜任,所以就用到了Overlay显示模式进行单独调节。Overlay显示模式具有速度快、画质好、占用系统资源少等特点,很适合于视频播放。

1.3HWC实现

显示设备的能力千差万别,很难直接用API表示硬件设备支持合成的Layer数量,Layer是否可以进行旋转和混合模式操作,以及对图层定位和硬件合成的限制等。因此HWC描述上述信息的流程是这样的:

  1. SurfaceFlinger向HWC提供所有Layer的完整列表,让HWC根据其硬件能力,决定如何处理这些Layer。

  2. HWC会为每个Layer标注合成方式,是通过GPU还是通过HWC合成。

  3. SurfaceFlinger负责先把所有注明GPU合成的Layer合成到一个输出Buffer,然后把这个输出Buffer和其他Layer(注明HWC合成的Layer)一起交给HWC,让HWC完成剩余Layer的合成和显示。

1.4 HWC功能

虽然每个显示设备的能力不同,但是官方要求每个HWC硬件模块都应该支持以下能力:

  1. 至少支持4个叠加层:状态栏、系统栏、应用本身和壁纸或者背景。

  2. 叠加层可以大于显示屏,例如:壁纸

  3. 同时支持预乘每像素(per-pixel)Alpha混合和每平面(per-plane)Alpha混合。

  4. 为了支持受保护的内容,必须提供受保护视频播放的硬件路径

  5. RGBA packing order, YUV formats, and tiling, swizzling, and stride properties

Tiling:可以把Image切割成MxN个小块,最后渲染时,再将这些小块拼接起来,就像铺瓷砖一样。
Swizzling:一种拌和技术,表示向量单元可以被任意地重排或重复。

1.5 HWC效率

并非所有情况下HWC都比GPU更高效,例如:当屏幕上没有任何变化时,尤其是叠加层有透明像素并且需要进行图层透明像素混合时。在这种情况下,HWC可以要求部分或者全部叠加层都进行GPU合成,然后HWC持有合成的结果Buffer,如果SurfaceFlinger 要求合成相同的叠加图层列表,HWC可以直接显示之前合成的结果Buffer,这有助于提高待机设备的电池寿命。

1.6 Compose方式

目前SurfaceFlinger中支持两种合成方式,一种是Device合成,一种是Client合成。SurfaceFlinger 在收集可见层的所有缓冲区之后,便会询问 Hardware Composer 应如何进行合成。

Client合成方式是相对与硬件合成来说的,其合成方式是,将各个Layer的内容用GPU渲染到暂存缓冲区中,最后将暂存缓冲区传送到显示硬件。这个暂存缓冲区,我们称为FBTarget,每个Display设备有各自的FBTarget。Client合成,之前称为GLES合成,我们也可以称之为GPU合成。Client合成,采用RenderEngine进行合成。

Device合成就是用专门的硬件合成器进行合成HWComposer,所以硬件合成的能力就取决于硬件的实现。其合成方式是将各个Layer的数据全部传给显示硬件,并告知它从不同的缓冲区读取屏幕不同部分的数据。HWComposer是Devicehec的抽象。

2、Fence

Fence是一种同步机制,在Android里主要用于图形系统中GraphicBuffer的同步。

2.1 Fence作用

Fence和已有同步机制相比,它主要被用来处理跨硬件的情况,尤其是CPU,GPU和HWC之间的同步,另外它还可以用于多个时间点之间的同步。GPU编程和纯CPU编程一个很大的不同是它是异步的,也就是说当我们调用GL command返回时这条命令并不一定完成了,只是把这个命令放在本地的command buffer里。具体什么时候这条GL command被真正执行完毕CPU是不知道的,除非CPU使用glFinish()等待这些命令执行完,另外一种方法就是基于同步对象的Fence机制。下面举个生产者把GraphicBuffer交给消费者的例子。如生产者是App中的renderer,消费者是SurfaceFlinger。GraphicBuffer的队列放在缓冲队列BufferQueue中。BufferQueue对App端的接口为IGraphicBufferProducer,实现类为Surface,对SurfaceFlinger端的接口为IGraphicBufferConsumer,实现类为SurfaceFlingerConsumer。BufferQueue中对每个GraphiBuffer都有BufferState标记着它的状态。

这个状态一定程度上说明了该GraphicBuffer的归属,但只指示了CPU里的状态,而GraphicBuffer的真正使用者是GPU。也就是说,当生产者把一个GraphicBuffer放入BufferQueue时,只是在CPU层面完成了归属的转移。但GPU说不定还在用,如果还在用的话消费者是不能拿去合成的。这时候GraphicBuffer和生产消费者的关系就比较暧昧了,消费者对GraphicBuffer具有拥有权,但无使用权,它需要等一个信号,告诉它GPU用完了,消费者才真正拥有使用权。

这个通知GraphicBuffer被上一个使用者用完的信号就是由Fence完成的。Fence的存在非常单纯,从诞生开始就是为了在合适的时间发出一个信号。另一个角度来说,为什么不在生产者把GraphicBuffer交给消费者时就调用glFinish()等GPU完成呢?这样拥有权和使用权就一并传递了,无需Fence。就功能上这样做是可以的,但性能会有影响,因为glFinish()是阻塞的,这时CPU为了等GPU自己也不能工作了。如果用Fence的话就可以等这个GraphicBuffer真正要被消费者用到时再阻塞,而那之前CPU和GPU是可以并行工作的。这样相当于实现了临界资源的lazy passing

2.1 Fence实现

Fence,顾名思义就是把先到的拦住,等后来的,两者步调一致了再往前走。抽象地说,Fence包含了同一或不同时间轴上的多个时间点,只有当这些点同时到达时Fence才会被触发。

Fence可以由硬件实现(Graphic driver),也可以由软件实现(Android kernel中的sw_sync)。EGL中提供了同步对象的扩展KHR_fence_sync(http://www.khronos.org/registry/vg/extensions/KHR/EGL_KHR_fence_sync.txt)。其中提供了eglCreateSyncKHR (),eglDestroySyncKHR()产生和销毁同步对象。这个同步对象是往GL command队列中插入的一个特殊操作,当执行到它时,会发出信号指示队列前面的命令已全部执行完毕。函数eglClientWaitSyncKHR()可让调用者阻塞等待信号发生。

在此基础之上,Android对其进行了扩展-ANDROID_native_fence_sync,新加了接口eglDupNativeFenceFDANDROID()。它可以把一个同步对象转化为一个文件描述符(反过来,eglCreateSyncKHR()可以把文件描述符转成同步对象)。这个扩展相当于让CPU中有了GPU中同步对象的句柄,文件描述符可以在进程间传递(通过binder或domain socket等IPC机制),这就为多进程间的同步提供了基础。我们知道Unix系统一切皆文件,因此,有个这个扩展以后Fence的通用性大大增强了。

Android还进一步丰富了Fence的software stack。主要分布在三部分:C++ Fence类位于/frameworks/native/libs/ui/Fence.cpp; C的libsync库位于/system/core/libsync/sync.c; Kernel driver部分位于/drivers/base/sync.c。总得来说,kernel driver部分是同步的主要实现,libsync是对driver接口的封装,Fence是对libsync的进一步的C++封装。Fence会被作为GraphicBuffer的附属随着GraphicBuffer在生产者和消费间传输。另外Fence的软件实现位于/drivers/base/sw_sync.c。SyncFeatures用以查询系统支持的同步机制:/frameworks/native/libs/gui/SyncFeatures.cpp。

2.1 Fence流程

Fence在Android中的具体用法。它主要的作用是GraphicBuffer在App, GPU和HWC三者间传递时作同步。首先看一下GraphicBuffer从App到Display的旅程。GraphicBuffer先由App端作为生产者进行绘制,然后放入到BufferQueue,等待消费者取出作下一步的渲染合成。SurfaceFlinger作为消费者,会把每个层对应的GraphicBuffer取来生成EGLImageKHR对象。合成时对于GraphicBuffer的处理分两种情况。对于Overlay的层,SurfaceFlinger会直接将其buffer handle放入HWC的Layer list。对于需要GPU绘制的层(超出HWC处理层数或者有复杂变换的),SurfaceFlinger会将前面生成的EGLImageKHR通过glEGLImageTargetTexture2DOES()作为纹理进行合成。合成完后SurfaceFlinger又作为生产者,把GPU合成好的framebuffer的handle置到HWC中的FramebufferTarget中(HWC中hwc_display_contents_1_t中的hwc_layer_1_t列表最后一个slot用于放GPU的渲染结果所在buffer)。HWC最后叠加Overlay层再往Display上扔,这时HWC是消费者。整个大致流程如图:
HWC
可以看到,对于非Overlay的层来说GraphicBuffer先后经过两个生产消费者模型。我们知道GraphicBuffer核心包含的是buffer_handle_t结构,它指向的native_handle_t包含了gralloc中申请出来的图形缓冲区的文件描述符和其它基本属性,这个文件描述符会被同时映射到客户端和服务端,作为共享内存。转载图片
由于服务和客户端进程都可以访问同一物理内存,因此不加同步的话会引起错误。为了协调客户端和服务端,在传输GraphicBuffer时,还带有Fence,标志了它是否被上一个使用者使用完毕。Fence按作用大体分两种:acquireFence和releaseFence。前者用于生产者通知消费者生产已完成,后者用于消费者通知生产者消费已完成。下面分别看一下这两种Fence的产生和使用过程。首先是acquireFence的使用流程:

转载图片
当App端通过queueBuffer()向BufferQueue插入GraphicBuffer时,会顺带一个Fence,这个Fence指示这个GraphicBuffer是否已被生产者用好。之后该GraphicBuffer被消费者通过acquireBuffer()拿走,同时也会取出这个acquireFence。之后消费者(也就是SurfaceFlinger)要把它拿来渲染时,需要等待Fence被触发。

如果该层是通过GPU渲染(下面路径)的,那么使用它的地方是Layer::onDraw(),其中会通过bindTextureImage()绑定纹理

486 status_t err = mSurfaceFlingerConsumer->bindTextureImage();

该函数最后会调用doGLFenceWaitLocked()等待acquireFence触发。因为再接下来就是要拿来画了,如果这儿不等待直接往下走,那渲染出来的就是错误的内容。

如果该层是HWC渲染Overlay层,那么不需要经过GPU,那就需要把这些层对应的acquireFence传到HWC中。这样,HWC在合成前就能确认这个buffer是否已被生产者使用完,因此一个正常点的HWC需要等这些个acquireFence全被触发才能去绘制。这个设置的工作是在**SurfaceFlinger::doComposeSurfaces()**中完成的,该函数会调用每个层的layer::setAcquireFence()函数:

428 if (layer.getCompositionType() == HWC_OVERLAY) {
    
    undefined
429 sp<Fence> fence = mSurfaceFlingerConsumer->getCurrentFence();
...
431 fenceFd = fence->dup();
...
437 layer.setAcquireFenceFd(fenceFd);

可以看到其中忽略了非Overlay的层,因为HWC不需要直接和非Overlay层同步,它只要和这些非Overlay层合成的结果FramebufferTarget同步就可以了。GPU渲染完非Overlay的层后,通过queueBuffer()将GraphicBuffer放入FramebufferSurface对应的BufferQueue,然后FramebufferSurface::onFrameAvailable()被调用。它先会通过nextBuffer()->acquireBufferLocked()从BufferQueue中拿一个GraphicBuffer,附带拿到它的acquireFence。接着调用HWComposer::fbPost()->setFramebufferTarget(),其中会把刚才acquire的GraphicBuffer连带acquireFence设到HWC的Layer list中的FramebufferTarget slot中:

580 acquireFenceFd = acquireFence->dup();
...
586 disp.framebufferTarget->acquireFenceFd = acquireFenceFd;

综上,HWC进行最后处理的前提是Overlay层的acquireFence及FramebufferTarget的acquireFence都被触发。

看完acquireFence,再看看releaseFence的使用流程:

转载图片
前面提到合成的过程先是GPU工作,在doComposition()函数中合成非Overlay的层,结果放在framebuffer中。然后SurfaceFlinger会调用postFramebuffer()让HWC开始工作。postFramebuffer()中最主要是调用HWC的set()接口通知HWC进行合成显示,然后会将HWC中产生的releaseFence(如有)同步到SurfaceFlingerConsumer中。实现位于Layer的onLayerDisplayed()函数中:
151 mSurfaceFlingerConsumer->setReleaseFence(layer->getAndResetReleaseFence());

上面主要是针对Overlay的层,那对于GPU绘制的层呢?在收到INVALIDATE消息时,SurfaceFlinger会依次调用handleMessageInvalidate()->handlePageFlip()->Layer::latchBuffer()->SurfaceFlingerConsumer::updateTexImage() ,其中会调用该层对应Consumer的GLConsumer::updateAndReleaseLocked() 函数。该函数会释放老的GraphicBuffer,释放前会通过syncForReleaseLocked()函数插入releaseFence,代表如果触发时该GraphicBuffer消费者已经使用完毕。然后调用releaseBufferLocked()还给BufferQueue,当然还带着这个releaseFence。这样,当这个GraphicBuffer被生产者再次通过dequeueBuffer()拿出时,就可以通过这个releaseFence来判断消费者是否仍然在使用。

另一方面,HWC合成完毕后,SurfaceFlinger会依次调用DisplayDevice::onSwapBuffersCompleted() -> FramebufferSurface::onFrameCommitted()。onFrameCommitted()核心代码如下:

148 sp<Fence> fence = mHwc.getAndResetReleaseFence(mDisplayType);
...
151 status_t err = addReleaseFence(mCurrentBufferSlot,
152 mCurrentBuffer, fence);

此处拿到HWC生成的FramebufferTarget的releaseFence,设到FramebufferSurface中相应的GraphicBuffer Slot中。这样FramebufferSurface对应的GraphicBuffer也可以被释放回BufferQueue了。当将来EGL从中拿到这个buffer时,照例也要先等待这个releaseFence触发才能使用。

引用
https://blog.csdn.net/cosmoslhf/article/details/49925317?locationnum=1&fps=1
http://netaz.blogspot.com/2013/10/android-fences-introduction-in-any.html
http://www.khronos.org/registry/vg/extensions/KHR/EGL_KHR_fence_sync.txt
http://snorp.net/2011/12/16/android-direct-texture.html

猜你喜欢

转载自blog.csdn.net/qq_38750519/article/details/122566925