动态内存管理(上)——“C”

各位CSDN的uu们你们好呀,今天,小雅兰的内容是动态内存管理噢,下面,让我们进入动态内存管理的世界吧


为什么存在动态内存分配

动态内存函数的介绍

                malloc

                free

                calloc

                realloc

常见的动态内存错误


 为什么存在动态内存分配

我们已经掌握的内存开辟方式有:

int val = 20;//在栈空间上开辟四个字节
char arr[10] = {0};//在栈空间上开辟10个字节的连续空间

但是上述的开辟空间的方式有两个特点:

  • 空间开辟大小是固定的。
  • 数组在申明的时候,必须指定数组的长度,它所需要的内存在编译时分配。

但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知道, 那数组的编译时开辟空间的方式就不能满足了。 这时候就只能试试动态存开辟了。  


动态内存函数的介绍

malloc

C语言提供了一个动态内存开辟的函数:

                void* malloc (size_t size);  

这个函数向内存申请一块连续可用的空间,并返回指向这块空间的指针。

  • 如果开辟成功,则返回一个指向开辟好空间的指针。
  • 如果开辟失败,则返回一个NULL指针,因此malloc的返回值一定要做检查。
  • 返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定。
  • 如果参数size为0,malloc的行为是标准是未定义的,取决于编译器。

free 

C语言提供了另外一个函数free,专门是用来做动态内存的释放和回收的

函数原型如下:  

                 void free (void* ptr);

free函数用来释放动态开辟的内存。

  • 如果参数 ptr 指向的空间不是动态开辟的,那free函数的行为是未定义的。
  • 如果参数 ptr 是NULL指针,则函数什么事都不做。

 

 下面,让我们来使用一下malloc和free

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<errno.h>
int main()
{
	//申请
	int* p = (int*)malloc(20);//20个字节
	if (p == NULL)
	{
		printf("%s\n", strerror(errno));
		return 1;
	}
	//使用
	int i = 0;
	for (i = 0; i < 5; i++)
	{
		*(p + i) = i + 1;
	}
	for (i = 0; i < 5; i++)
	{
		printf("%d ", *(p + i));
	}
	//释放
	free(p);
	p = NULL;
	return 0;
}

calloc

 

C语言还提供了一个函数叫 calloc , calloc 函数也用来动态内存分配。

                 void* calloc (size_t num, size_t size);

  • 函数的功能是为 num 个大小为 size 的元素开辟一块空间,并且把空间的每个字节初始化为0。
  • 与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全0。

还是来使用一下calloc函数

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<errno.h>
int main()
{
	int* p = (int*)calloc(10, sizeof(int));
	if (p == NULL)
	{
		printf("calloc()-->%s\n", strerror(errno));
		return 1;
	}
	//使用
	int i = 0;
	for (i = 0; i < 10; i++)
	{
		printf("%d ", p[i]);
	}
	//释放
	free(p);
	p = NULL;
	return 0;
}

 

所以如何对申请的内存空间的内容要求初始化,那么我们可以很方便的使用calloc函数来完成任务。  

 realloc

  • realloc函数的出现让动态内存管理更加灵活。
  • 有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的时候内存,我们一定会对内存的大小做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小的调整。

                void* realloc (void* ptr, size_t size);

  • ptr 是要调整的内存地址
  • size 调整之后新大小 返回值为调整之后的内存起始位置。
  • 这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到新的空间。
  • realloc在调整内存空间的是存在两种情况:

                情况1:原有空间之后有足够大的空间

                情况2:原有空间之后没有足够大的空间

当是情况1 的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。  

当是情况2的时候,原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找一个合适大小的连续空间来使用。这样函数返回的是一个新的内存地址。 

由于上述的两种情况,realloc函数的使用就要注意一些。

 下面,还是要来使用一下realloc函数

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<errno.h>
int main()
{
	int* p = (int*)malloc(20);
	if (p == NULL)
	{
		printf("%s\n", strerror(errno));
		return 1;
	}
	//使用
	int i = 0;
	for (i = 0; i < 5; i++)
	{
		p[i] = i + 1;
	}
	//p=realloc(p,20);
	//不可以这样写
	//因为:如果调整空间失败,返回一个NULL,不仅没有调整成功,反而把之前malloc出的20个字节给毁了
	//可谓是“赔了夫人又折兵”
	int* ptr = (int*)realloc(p, 40);
	if (ptr != NULL)
	{
		p = ptr;
		//使用
		for (i = 5; i < 10; i++)
		{
			p[i] = i + 1;
		}
		for (i = 0; i < 10; i++)
		{
			printf("%d ", p[i]);
		}
	}
	else
	{
		printf("realloc()-->%s\n", strerror(errno));
		return 1;
	}
	//释放
	free(p);
	p = NULL;
	return 0;
}


常见的内存错误

对NULL指针的解引用操作

#include<stdio.h>
#include<stdlib.h>
int main()
{
	int* p = (int*)malloc(20);
	//可能会对NULL指针的解引用操作
	//所以malloc函数的返回值是要判断的
	int i = 0;
	for (i = 0; i < 5; i++)
	{
		p[i] = i;
	}
	free(p);
	p = NULL;
	return 0;
}

对动态开辟空间的越界访问

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<errno.h>
int main()
{
	int* p = (int*)malloc(20);
	//可能会对NULL指针的解引用操作
	//所以malloc函数的返回值是要判断的
	if (p == NULL)
	{
		printf("%s\n", strerror(errno));
		return 1;
	}
	int i = 0;
	//越界访问
	for (i = 0; i < 10; i++)
	{
		p[i] = i;
	}
	free(p);
	p = NULL;
	return 0;
}

对非动态开辟内存使用free释放

#include<stdio.h>
#include<stdlib.h>
int main()
{
	int arr[] = { 1,2,3,4,5 };
	int* p = arr;
	//......
	free(p);
	p = NULL;
	return 0;
}

使用free释放一块动态开辟内存的一部分

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<errno.h>
int main()
{
	int* p = (int*)malloc(20);
	if (p == NULL)
	{
		printf("%s\n", strerror(errno));
		return 0;
	}
	int i = 0;
	for (i = 0; i < 5; i++)
	{
		*p = i + 1;
		p++;
	}
	free(p);//p不再指向动态内存的起始位置
	p = NULL;
	return 0;
}

对同一块动态内存多次释放

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<errno.h>
int main()
{
	int* p = (int*)malloc(20);
	if (p == NULL)
	{
		printf("%s\n", strerror(errno));
		return 1;
	}
	//使用
	//......
	//释放
	free(p);

	free(p);
	p = NULL;
	return 0;
}

把这个代码稍微改一下:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<errno.h>
int main()
{
	int* p = (int*)malloc(20);
	if (p == NULL)
	{
		printf("%s\n", strerror(errno));
		return 1;
	}
	//使用
	//......
	//释放
	free(p);
	p = NULL;

	free(p);
	p = NULL;
	return 0;
}

 这样就是可以的啦

动态开辟内存忘记释放(内存泄漏)

#include<stdio.h>
#include<stdlib.h>
void test()
{
	int* p = (int*)malloc(20);
	//使用
	//存放1 2 3 4 5
}
int main()
{
	test();
	return 0;
}
#include<stdio.h>
#include<stdlib.h>
void test()
{
	int * p = (int*)malloc(100);
	if(NULL!=p)
	{
		*p = 20;
	}
}

int main()
{
	test();
	while(1);
}

忘记释放不再使用的动态开辟的空间会造成内存泄漏。

切记:动态开辟的空间一定要释放,并且正确释放 。


好啦,小雅兰今天的内容就到这里了,这一块的知识确实对我来说是一个非常大的挑战,我会尽量去学,努力在自己大彻大悟的时候帮助到一直支持我的uu,嘿嘿,学习了动态内存管理之后,接下来,敬请期待小雅兰的动态版通讯录噢!!!

猜你喜欢

转载自blog.csdn.net/weixin_74957752/article/details/129760370