k8s 组件及优势

图片

1、k8s是什么

Kubernetes 是一个可移植、可扩展的开源平台,用于管理容器化的工作负载和服务,可促进声明式配置和自动化。Kubernetes 拥有一个庞大且快速增长的生态,其服务、支持和工具的使用范围相当广泛。

Kubernetes 这个名字源于希腊语,意为“舵手”或“飞行员”。k8s 这个缩写是因为 k 和 s 之间有八个字符的关系。Google 在 2014 年开源了 Kubernetes 项目。Kubernetes 建立在Google 大规模运行生产工作负载十几年经验的基础上, 结合了社区中最优秀的想法和实践。

图片

1.1 传统部署时代:

早期,各机构是在物理服务器上运行应用程序。由于无法限制在物理服务器中运行的应用程序资源使用,因此会导致资源分配问题。例如,如果在物理服务器上运行多个应用程序, 则可能会出现一个应用程序占用大部分资源的情况,而导致其他应用程序的性能下降。一种解决方案是将每个应用程序都运行在不同的物理服务器上, 但是当某个应用程式资源利用率不高时,剩余资源无法被分配给其他应用程式, 而且维护许多物理服务器的成本很高。

1.2 虚拟化部署时代:

因此,虚拟化技术被引入了。虚拟化技术允许你在单个物理服务器的 CPU 上运行多台虚拟机(VM)。虚拟化能使应用程序在不同 VM 之间被彼此隔离,且能提供一定程度的安全性, 因为一个应用程序的信息不能被另一应用程序随意访问。

虚拟化技术能够更好地利用物理服务器的资源,并且因为可轻松地添加或更新应用程序, 而因此可以具有更高的可伸缩性,以及降低硬件成本等等的好处。

每个 VM 是一台完整的计算机,在虚拟化硬件之上运行所有组件,包括其自己的操作系统(OS)。

1.3 容器部署时代:

容器类似于 VM,但是更宽松的隔离特性,使容器之间可以共享操作系统(OS)。因此,容器比起 VM 被认为是更轻量级的。且与 VM 类似,每个容器都具有自己的文件系统、CPU、内存、进程空间等。由于它们与基础架构分离,因此可以跨云和 OS 发行版本进行移植。

容器因具有许多优势而变得流行起来。下面列出的是容器的一些好处:

  • 敏捷应用程序的创建和部署:与使用 VM 镜像相比,提高了容器镜像创建的简便性和效率。

  • 持续开发、集成和部署:通过快速简单的回滚(由于镜像不可变性), 提供可靠且频繁的容器镜像构建和部署。

  • 关注开发与运维的分离:在构建、发布时创建应用程序容器镜像,而不是在部署时, 从而将应用程序与基础架构分离。

  • 可观察性:不仅可以显示 OS 级别的信息和指标,还可以显示应用程序的运行状况和其他指标信号。

  • 跨开发、测试和生产的环境一致性:在笔记本计算机上也可以和在云中运行一样的应用程序。

  • 跨云和操作系统发行版本的可移植性:可在 Ubuntu、RHEL、CoreOS、本地、 Google Kubernetes Engine 和其他任何地方运行。

  • 以应用程序为中心的管理:提高抽象级别,从在虚拟硬件上运行 OS 到使用逻辑资源在 OS 上运行应用程序。

  • 松散耦合、分布式、弹性、解放的微服务:应用程序被分解成较小的独立部分, 并且可以动态部署和管理 - 而不是在一台大型单机上整体运行。

  • 资源隔离:可预测的应用程序性能。

  • 资源利用:高效率和高密度。

2、Kubernetes 组件

当你部署完 Kubernetes,便拥有了一个完整的集群。

一个 Kubernetes 集群是由一组被称作节点(node)的机器组成, 这些节点上会运行由 Kubernetes 所管理的容器化应用。且每个集群至少有一个工作节点。

工作节点会托管所谓的 Pods,而 Pod 就是作为应用负载的组件。控制平面管理集群中的工作节点和 Pods。为集群提供故障转移和高可用性, 这些控制平面一般跨多主机运行,而集群也会跨多个节点运行。

图片

2.1 控制平面组件(Control Plane Components)

控制平面组件会为集群做出全局决策,比如资源的调度。以及检测和响应集群事件,例如当不满足部署的 replicas 字段时, 要启动新的 pod)。

控制平面组件可以在集群中的任何节点上运行。然而,为了简单起见,设置脚本通常会在同一个计算机上启动所有控制平面组件, 并且不会在此计算机上运行用户容器。请参阅使用 kubeadm 构建高可用性集群 中关于跨多机器控制平面设置的示例。

2.1.1 kube-apiserver

API 服务器是 Kubernetes 控制平面的组件, 该组件负责公开了 Kubernetes API,负责处理接受请求的工作。API 服务器是 Kubernetes 控制平面的前端。

Kubernetes API 服务器的主要实现是 kube-apiserver。 kube-apiserver 设计上考虑了水平扩缩,也就是说,它可通过部署多个实例来进行扩缩。你可以运行 kube-apiserver 的多个实例,并在这些实例之间平衡流量。

2.1.2 etcd

etcd 是兼顾一致性与高可用性的键值数据库,可以作为保存 Kubernetes 所有集群数据的后台数据库。

你的 Kubernetes 集群的 etcd 数据库通常需要有个备份计划。

2.1.3 kube-scheduler

kube-scheduler 是控制平面的组件, 负责监视新创建的、未指定运行节点(node)的 Pods, 并选择节点来让 Pod 在上面运行。

调度决策考虑的因素包括单个 Pod 及 Pods 集合的资源需求、软硬件及策略约束、 亲和性及反亲和性规范、数据位置、工作负载间的干扰及最后时限。

2.1.4 kube-controller-manager

kube-controller-manager 是控制平面的组件, 负责运行控制器进程。

从逻辑上讲, 每个控制器都是一个单独的进程, 但是为了降低复杂性,它们都被编译到同一个可执行文件,并在同一个进程中运行。

这些控制器包括:

  • 节点控制器(Node Controller):负责在节点出现故障时进行通知和响应

  • 任务控制器(Job Controller):监测代表一次性任务的 Job 对象,然后创建 Pods 来运行这些任务直至完成

  • 端点控制器(Endpoints Controller):填充端点(Endpoints)对象(即加入 Service 与 Pod)

  • 服务帐户和令牌控制器(Service Account & Token Controllers):为新的命名空间创建默认帐户和 API 访问令牌

2.1.5 cloud-controller-manager

cloud-controller-manager 是指嵌入特定云的控制逻辑之 控制平面组件。 cloud-controller-manager 允许你将你的集群连接到云提供商的 API 之上, 并将与该云平台交互的组件同与你的集群交互的组件分离开来。

cloud-controller-manager 仅运行特定于云平台的控制器。因此如果你在自己的环境中运行 Kubernetes,或者在本地计算机中运行学习环境, 所部署的集群不需要有云控制器管理器。

kube-controller-manager 类似,cloud-controller-manager 将若干逻辑上独立的控制回路组合到同一个可执行文件中, 供你以同一进程的方式运行。你可以对其执行水平扩容(运行不止一个副本)以提升性能或者增强容错能力。

下面的控制器都包含对云平台驱动的依赖:

  • 节点控制器(Node Controller):用于在节点终止响应后检查云提供商以确定节点是否已被删除

  • 路由控制器(Route Controller):用于在底层云基础架构中设置路由

  • 服务控制器(Service Controller):用于创建、更新和删除云提供商负载均衡器

2.2 Node 组件

节点组件会在每个节点上运行,负责维护运行的 Pod 并提供 Kubernetes 运行环境。

2.2.1 kubelet

kubelet 会在集群中每个节点(node)上运行。它保证容器(containers)都运行在 Pod 中。

kubelet 接收一组通过各类机制提供给它的 PodSpecs, 确保这些 PodSpecs 中描述的容器处于运行状态且健康。kubelet 不会管理不是由 Kubernetes 创建的容器。

2.2.2 kube-proxy

kube-proxy 是集群中每个节点(node)所上运行的网络代理, 实现 Kubernetes 服务(Service) 概念的一部分。

kube-proxy 维护节点上的一些网络规则, 这些网络规则会允许从集群内部或外部的网络会话与 Pod 进行网络通信。

如果操作系统提供了可用的数据包过滤层,则 kube-proxy 会通过它来实现网络规则。否则,kube-proxy 仅做流量转发。

2.2.3 容器运行时(Container Runtime)

容器运行环境是负责运行容器的软件。

Kubernetes 支持许多容器运行环境,例如 Docker、 containerd、 CRI-O 以及 Kubernetes CRI (容器运行环境接口) 的其他任何实现。

2.3 插件(Addons)

插件使用 Kubernetes 资源(DaemonSet、 Deployment 等)实现集群功能。因为这些插件提供集群级别的功能,插件中命名空间域的资源属于 kube-system 命名空间。

2.3.1 DNS

尽管其他插件都并非严格意义上的必需组件,但几乎所有 Kubernetes 集群都应该 有集群 DNS, 因为很多示例都需要 DNS 服务。

集群 DNS 是一个 DNS 服务器,和环境中的其他 DNS 服务器一起工作,它为 Kubernetes 服务提供 DNS 记录。

Kubernetes 启动的容器自动将此 DNS 服务器包含在其 DNS 搜索列表中。

2.3.2 Web 界面(仪表盘)

Dashboard 是 Kubernetes 集群的通用的、基于 Web 的用户界面。它使用户可以管理集群中运行的应用程序以及集群本身, 并进行故障排除。

图片

猜你喜欢

转载自blog.csdn.net/hyunbar/article/details/125811199