邻接表:无权图插入边

问题描述:
目的:使用C++模板设计并逐步完善图的邻接表抽象数据类型(ADT)。
内容:(1)请参照图的邻接矩阵模板类原型,设计并逐步完善图的邻接表ADT。(由于该环境目前仅支持单文件的编译,故将所有内容都集中在一个源文件内。在实际的设计中,推荐将抽象类及对应的派生类分别放在单独的头文件中。)
(2)设计并实现一个算法,在已存在的无权图中插入一条边。插入成功,返回true;否则返回false。图的存储结构采用邻接表。将其加入到ADT中。
注意:DG(有向图), DN(有向网), UDG(无向图), UDN(无向网)
参考函数原型:
//无权图插入一条边
template<class TypeOfVer, class TypeOfEdge>
bool adjlist_graph<TypeOfVer, TypeOfEdge>::Insert_Edge( int u, int v ); //有向图时,u为弧尾,v为弧头

输入说明 :
建图的输入数据格式参见建图的算法说明。
第一行:图的类型
第二行:结点数
第三行:结点集
第四行:边数
第五行:边集
第六行:邻接顶点1
第七行:邻接顶点2

输出说明 :
第一行:顶点集
第二行:插入边前的边数
第三行:插入边前的邻接表
空行
第四行:true(false)
第五行:插入边后的边数
第六行:插入边后的邻接表

输入范例 :
DG
6
A B C D E F
6
0 1
0 2
0 3
1 4
2 4
3 5
1
3

输出范例 :
A B C D E F
6
A->3->2->1->nullptr
B->4->nullptr
C->4->nullptr
D->5->nullptr
E->nullptr
F->nullptr
(空行)
true
A B C D E F
7
A->3->2->1->nullptr
B->3->4->nullptr
C->4->nullptr
D->5->nullptr
E->nullptr
F->nullptr

#include<iostream>
#include<vector>
#include<string>
#include<sstream>
#include<queue>
#include<stack>
#include<cmath>
using namespace std;
string b[10001];//用来存放顶点集
//DG(有向图)  DN(有向网)  UDG(无向图) UDN(无向网)

//图的邻接表模板类原型参考如下:
//边表的顶点定义
template<class TypeOfEdge>//这个就是在边上的顶点定义
struct edgeNode{
    
    
    int data;
    TypeOfEdge weight;
    edgeNode<TypeOfEdge> *next;
    //构造函数,用于构造其他顶点(无权图)
    //函数参数表中的形参允许有默认值,但是带默认值的参数需要放后面
    edgeNode(int d,edgeNode<TypeOfEdge> *ptr=NULL){
    
     data=d;next=ptr; }
    //构造函数,用于构造其他顶点(带权图)
    //函数参数表中的形参允许有默认值,但是带默认值的参数需要放后面
    edgeNode(int d,TypeOfEdge w,edgeNode<TypeOfEdge> *ptr=NULL){
    
    
        data=d; weight=w; next=ptr;
    }
    int getData(){
    
     return data; }//取得顶点的序号(顶点集)
    TypeOfEdge getWeight(){
    
     return weight; }//取得边集中对应边的权值
    void SetLink(edgeNode<TypeOfEdge> *link ){
    
     next=link; }//修改顶点的next域
    void SetData(int value){
    
     data=value; }//修改顶点的序号(顶点集)
    void SetWeight(TypeOfEdge value){
    
     weight=value; }//修改边集中对应边的权值
};

//图的邻接表类   这个结构体是存储顶点的结构体,里面包括顶点和它的下一个指针
template<class TypeOfVer,class TypeOfEdge>
struct verNode{
    
    
    TypeOfVer ver;//存放顶点名称
    edgeNode<TypeOfEdge> *head;//顶点的指针
    verNode(edgeNode<TypeOfEdge> *h=NULL){
    
     head=h; }
    TypeOfVer getVer(){
    
     return ver; }//取得顶点值(顶点集)
    edgeNode<TypeOfEdge> *getHead(){
    
     return head; }//取得对应的边表的头指针
    void setVer(TypeOfVer value){
    
     ver=value; }//设置顶点值(顶点集)
    void setHead(edgeNode<TypeOfEdge> *value){
    
     head=value; }//设置对应的边表的头指针
};

template<class TypeOfVer,class TypeOfEdge>//顶点类型  边的类型
class adjlist_graph{
    
    
    private:
       int Vers;//顶点数
       int Edges;//边数
       string GraphKind;//图的种类标志
       verNode<TypeOfVer,TypeOfEdge> *verList;//按顺序存储结构存储顶点集
       bool Delete_Edge(int u,int v);
       bool DFS(int u,int num,int visited[]);//DFS遍历(递归部分)
    public:
       //构造函数构造一个只有顶点没有边的图
       //3个参数的含义:图的类型、顶点数、顶点值
       adjlist_graph(string kd,int vSize,TypeOfVer d[]){
    
    
            GraphKind=kd;
            Vers=vSize;
            verList=new verNode<TypeOfVer,TypeOfEdge> [Vers];//建立顶点值
            for(int i=0;i<Vers;++i){
    
    
                verList[i].ver=d[i];
                verList[i].head=NULL;//一开始构造的时候顶点还没有相邻的顶点
            }
       }
       //构造函数构造一个无权图
       //5个参数的含义:图的类型、顶点数、顶点集、  边数和边集
       adjlist_graph(string kd,int vSize,TypeOfVer d[],int eSize,int **e){
    
    
            GraphKind=kd;
            Vers=vSize;
            Edges=eSize;
            verList=new verNode<TypeOfVer,TypeOfEdge> [Vers];//建立顶点值
            for(int i=0;i<Vers;++i){
    
    
                verList[i].ver=d[i];
                verList[i].head=NULL;//一开始构造的时候顶点还没有相邻的顶点
            }
            for(int i=0;i<Edges;++i){
    
    //从边开始构造顶点
                for(int j=0;j<Vers;++j){
    
    
                    if(e[i][0]==j){
    
    
                        if(GraphKind[0]!='U'){
    
    //有向图的情况就只有1个方向
                            Insert_Edge(e[i][0],e[i][1]);
                            Edges-=1;
                            break;
                        }
                        else{
    
    //无向图的表结点的个数是边数的2倍
                            Insert_Edge(e[i][0],e[i][1]);
                            Insert_Edge(e[i][1],e[i][0]);
                            Edges-=2;
                            break;
                        }
                    }
                }
            }
       }
       //构造函数构造一个有权图
       //6个参数的含义:图的类型、顶点数、顶点集、      边数、边集         权集
       adjlist_graph(string kd,int vSize,TypeOfVer d[],int eSize,int **e,TypeOfEdge w[]);
       bool GraphisEmpty(){
    
     return Vers==0; }//判断图空否
       string GetGraphKind(){
    
     return GraphKind; }//返回图的类型
       int GetVerNum(){
    
     return Vers; }//取得当前顶点数
       int* GetEdgeNum(){
    
     return &Edges; }  //取得当前边数
       bool GetVer(int u,TypeOfVer &data){
    
    //取得G中指定顶点的值
            return true;
       }
       //返回G中指定顶点u的第一个邻接顶点的位序(顶点集)
       //若顶点在G中没有邻接顶点,则返回-1
       int GetFirstAdjVex(int u,int &v){
    
    
            if(verList[u].head!=NULL){
    
    
                v=verList[u].head->data;
                return v;
            }
            v=-1;
            return -1;
       }
       int GetNextAdjVex(int u,int v,int w);//返回G中指定顶点u的下一个邻接顶点(相对于v)的位序(顶点集)。若顶点在G中没有邻接顶点,则返回false
       bool PutVer(int u, TypeOfVer data);//对G中指定顶点赋值
       bool InsertVer(const TypeOfVer data);//往G中添加一个顶点
       int LocateVer(TypeOfVer data);//返回G中指定顶点的位置
       bool ExistEdge(int u,int v);
       //输出顶点集
       void PrintVer(){
    
    
           for(int i=0;i<Vers;++i){
    
    
                if(i==0)
                    cout<<verList[i].ver;
                else
                    cout<<" "<<verList[i].ver;
           }
           cout<<endl;
       }
       //输出邻接表
       void PrintAdjList(){
    
    
            for(int i=0;i<Vers;++i){
    
    
                cout<<verList[i].ver;
                if(verList[i].head!=NULL){
    
    
                    edgeNode<TypeOfEdge> *p=verList[i].head;//从顶点开始遍历
                    while(p){
    
    
                        cout<<"->"<<p->data;
                        p=p->next;
                    }
                    cout<<"->nullptr"<<endl;
                }
                else
                    cout<<"->nullptr"<<endl;
            }
       }
       //无权图插入一条边
       bool Insert_Edge(int u,int v){
    
    //u是起点,v是终点
            if(u<0||u>=Vers||v<0||v>=Vers)//不在范围内时无法插入,返回false
                return false;
            //if(v==u)
              //  return false;
            if(verList[u].head!=NULL){
    
    
            edgeNode<TypeOfEdge> *p=verList[u].head;//这个是判断如果本来就存在这条边的情况
            while(p){
    
    
                    if(p->data==v)
                        return false;
                    p=p->next;
                }
            }
            edgeNode<TypeOfEdge> *x=new edgeNode<TypeOfEdge>(v);//直接使用构造函数赋值
            //x.data=v;不要这么写
            x->next=verList[u].head;//这里面都没有->next  这个指针!!!!!!!
            verList[u].head=x;
            ++Edges;//边数加一
            return true;
       }
       bool Insert_Edge(int u,int v,TypeOfEdge w);//有权图插入一条边
       bool DeleteVer(const TypeOfVer data);//往G中删除一个顶点
       bool DeleteEdge(int u,int v);//删除边 (外壳:有向(删除1条边), 无向(删除2条边))
       void DFS_Traverse(int u);//DFS遍历(外壳部分)
       void BFS_Traverse(int u);//BFS遍历
       //~adjlist_graph(); //析构函数
};

template<class TypeOfVer,class TypeOfEdge>
void shuchu(adjlist_graph<TypeOfVer,TypeOfEdge> &tu,int n){
    
    
    //cout<<tu.GetGraphKind()<<endl;
    TypeOfVer x;
    tu.PrintVer();//输出顶点集
    TypeOfEdge* we;
    we=tu.GetEdgeNum();//返回第一个边数
    cout<<*we<<endl;
    tu.PrintAdjList();//输出邻接表
}


int main(){
    
    
    string str;//图的类型
    int n,m;//顶点数和边数
    getline(cin,str);
    cin>>n;//输入顶点个数
    for(int i=0;i<n;++i)
        cin>>b[i];//输入顶点集合
    cin>>m;//输入边数
    int **e;
    e=new int* [m];
    for(int i=0;i<m;++i)
        e[i]=new int [2];
    for(int i=0;i<m;++i)
        cin>>e[i][0]>>e[i][1];//输入边集
    adjlist_graph<string,int> tu(str,n,b,m,e);//使用构造函数构造图的类
    int no,to;//指定的顶点
    cin>>no>>to;
    shuchu(tu,n);
    cout<<endl;
    if(str[0]!='U'){
    
    //如果是有向图的情况就只有1个方向
        if(tu.Insert_Edge(no,to))
            cout<<"true"<<endl;
        else
            cout<<"false"<<endl;
    }
    else{
    
    //无向图2个方向都要考虑,所以要2个都true才可以
        if(tu.Insert_Edge(no,to)&&tu.Insert_Edge(to,no)){
    
    
            cout<<"true"<<endl;
            int *we=tu.GetEdgeNum();//这里我传回边数时用引用,这样可以改变其值,
            (*we)--;//因为无向图新增一条边,总边数还是加1,但是邻接表多了2个边结点,
        }           //而我写的加入一条边的函数每次都增加了1条边的数量,所以要减掉
        else
            cout<<"false"<<endl;
    }
    shuchu(tu,n);//如果没有插入成功还是要再输出一遍邻接表
    return 0;
}

因为我在构造邻接表的时候就用了bool Insert_Edge( int u, int v ); 这个函数,

//无权图插入一条边
       bool Insert_Edge(int u,int v){
    
    //u是起点,v是终点
            if(u<0||u>=Vers||v<0||v>=Vers)//不在范围内时无法插入,返回false
                return false;
            //if(v==u)
              //  return false;
            if(verList[u].head!=NULL){
    
    
            edgeNode<TypeOfEdge> *p=verList[u].head;//这个是判断如果本来就存在这条边的情况
            while(p){
    
    
                    if(p->data==v)
                        return false;
                    p=p->next;
                }
            }
            edgeNode<TypeOfEdge> *x=new edgeNode<TypeOfEdge>(v);//直接使用构造函数赋值
            //x.data=v;不要这么写
            x->next=verList[u].head;//这里面都没有->next  这个指针!!!!!!!
            verList[u].head=x;
            ++Edges;//边数加一
            return true;
       }

这个函数每次在成功加入一条边之后都会把边数加1,就是上面代码的倒数第二行。
1.在用构造函数中构造有向图的时候,因为本来传入边的参数时边的个数已经是固定的,所以要把调用这个函数的所加的一条边给减掉。
2.同理,在构造无向图时就要减掉2个边,因为无向图的边表结点的个数是边数的2倍。
上面说的是在构造函数调用这个函数的情况。

还有就是加入指定顶点的之间的一条边的情况:

如果是有向图加入一条边,那就是边的个数加一就行了。调用函数使得边数加1没问题。
如果是无向图因为要调用2次函数,调用2次函数其实是为了增加边表结点的连接,那么边的值就会加2,但其实就多了1条边。所以无向图时我们还要减掉1条边,于是我让返回边数的函数返回的是一个指针。

int* GetEdgeNum(){
    
     return &Edges; }  //取得当前边数

这样的话我们就可以通过指针修改边数的值,这样就保持前后一致了。

猜你喜欢

转载自blog.csdn.net/xiatutut/article/details/125612719