有序链表集合求交集 方法 总结

 - 二重for循环法,时间复杂度O(n*n)

 - 拉链法,时间复杂度O(n)

 - 水平分桶,多线程并行

 - bitmap,大大提高运算并行度,时间复杂度O(n)

 - 跳表,时间复杂度为O(log(n))

方案一:for * for,土办法,时间复杂度O(n*n)

画外音:比较笨的方法。

方案二:有序list求交集,拉链法

有序集合1{1,3,5,7,8,9}

有序集合2{2,3,4,5,6,7}

两个指针指向首元素,比较元素的大小:

(1)如果相同,放入结果集,随意移动一个指针;

(2)否则,移动值较小的一个指针,直到队尾;

这种方法的好处是:

利用“有序”这个特性,集合中的元素最多被比较一次,时间复杂度为O(n);

这个方法就像一条拉链的两边齿轮,一一比对就像拉链,故称为拉链法

方案三:分桶并行优化

举例:

有序集合1{1,3,5,7,8,9, 10,30,50,70,80,90}

有序集合2{2,3,4,5,6,7, 20,30,40,50,60,70}

求交集,先进行分桶拆分:

桶1的范围为[1, 9]

桶2的范围为[10, 100]

桶3的范围为[101, max_int]

于是:

集合1就拆分成

集合a{1,3,5,7,8,9}

集合b{10,30,50,70,80,90}

集合c{}

集合2就拆分成

集合d{2,3,4,5,6,7}

集合e{20,30,40,50,60,70}

集合e{}

每个桶内的数据量大大降低了,并且每个桶内没有重复元素,可以利用多线程并行计算:

桶1内的集合a和集合d的交集是x{3,5,7}

桶2内的集合b和集合e的交集是y{30, 50, 70}

桶3内的集合c和集合d的交集是z{}

最终,集合1和集合2的交集,是x与y与z的并集,即集合{3,5,7,30,50,70}。

画外音:多线程、水平切分都是常见的优化手段。

方案四:bitmap再次优化

数据进行了水平分桶拆分之后,每个桶内的数据一定处于一个范围之内,如果集合符合这个特点,就可以使用bitmap来表示集合:

如上图,假设set1{1,3,5,7,8,9}和set2{2,3,4,5,6,7}的所有元素都在桶值[1, 16]的范围之内,可以用16个bit来描述这两个集合,原集合中的元素x,在这个16bitmap中的第x个bit为1,此时两个bitmap求交集,只需要将两个bitmap进行“与”操作,结果集bitmap的3,5,7位是1,表明原集合的交集为{3,5,7}。

水平分桶,bitmap优化之后,能极大提高求交集的效率,但时间复杂度仍旧是O(n)。bitmap需要大量连续空间,占用内存较大。

画外音:bitmap能够表示集合,用它求集合交集速度非常快。

方案五:跳表skiplist

有序链表集合求交集,跳表是最常用的数据结构,它可以将有序集合求交集的复杂度由O(n)降至接近O(log(n))。

集合1{1,2,3,4,20,21,22,23,50,60,70}

集合2{50,70}

要求交集,如果用拉链法,会发现1,2,3,4,20,21,22,23都要被无效遍历一次,每个元素都要被比对,时间复杂度为O(n),能不能每次比对“跳过一些元素”呢?

跳表就出现了:

集合1{1,2,3,4,20,21,22,23,50,60,70}建立跳表时,一级只有{1,20,50}三个元素,二级与普通链表相同。

集合2{50,70}由于元素较少,只建立了一级普通链表。

如此这般,在实施“拉链”求交集的过程中,set1的指针能够由1跳到20再跳到50,中间能够跳过很多元素,无需进行一一比对,跳表求交集的时间复杂度近似O(log(n))。

来自:https://mp.weixin.qq.com/s/6qU7yWKhMZUiyu7TlcuiSA

每秒10W次分词搜索,产品经理又提了一个需求!!!(收藏)

猜你喜欢

转载自blog.csdn.net/u013288190/article/details/125615256