python交通信号灯检测yolov5交通信号灯识别,红绿灯检测,左转右转识别

python交通信号灯检测yolov5交通信号灯识别,红绿灯检测,左转右转识别

交通信号灯的检测与识别是无人驾驶与辅助驾驶必不可少的一部分,其识别精度直接关乎智能驾驶的安全。一般而言,在实际的道路场景中采集的交通信号灯图像具有复杂的背景,且感兴趣的信号灯区域只占很少的一部分,如下图所示。针对这些难点,国内外的众多研究者提出了相应的解决方案。

import argparse

from models import *  # set ONNX_EXPORT in models.py
from utils.datasets import *
from utils.utils import *


def detect(save_img=False):
    imgsz = (320, 192) if ONNX_EXPORT else opt.img_size  # (320, 192) or (416, 256) or (608, 352) for (height, width)
    out, source, weights, half, view_img, save_txt = opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt
    webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')

    # Initialize
    device = torch_utils.select_device(device='cpu' if ONNX_EXPORT else opt.device)
    # if os.path.exists(out):
    #     shutil.rmtree(out)  # delete output folder
    os.makedirs(out, exist_ok=True)  # make new output folder

    # Initialize model
    model = Darknet(opt.cfg, imgsz)

    # Load weights
    attempt_download(weights)
    if weights.endswith('.pt'):  # pytorch format
        model.load_state_dict(torch.load(weights, map_location=device)['model'])
    else:  # darknet format
        load_darknet_weights(model, weights)

    # Second-stage classifier
    classify = False
    if classify:
        modelc = torch_utils.load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Eval mode
    model.to(device).eval()

    # Fuse Conv2d + BatchNorm2d layers
    # model.fuse()

    # Export mode
    if ONNX_EXPORT:
        model.fuse()
        img = torch.zeros((1, 3) + imgsz)  # (1, 3, 320, 192)
        f = opt.weights.replace(opt.weights.split('.')[-1], 'onnx')  # *.onnx filename
        torch.onnx.export(model, img, f, verbose=False, opset_version=11,
                          input_names=['images'], output_names=['classes', 'boxes'])

        # Validate exported model
        import onnx
        model = onnx.load(f)  # Load the ONNX model
        onnx.checker.check_model(model)  # Check that the IR is well formed
        print(onnx.helper.printable_graph(model.graph))  # Print a human readable representation of the graph
        return

    # Half precision
    half = half and device.type != 'cpu'  # half precision only supported on CUDA
    if half:
        model.half()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        torch.backends.cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = load_classes(opt.names)
    # colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
    colors = [(0, 255, 0), (0, 0, 255), (0, 0, 155), (0, 200, 200), (29, 118, 255), (0 , 118, 255)]

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img.float()) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap, frame, nframes in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = torch_utils.time_synchronized()
        pred = model(img, augment=opt.augment)[0]
        t2 = torch_utils.time_synchronized()

        # to float
        if half:
            pred = pred.float()

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,
                                   multi_label=False, classes=opt.classes, agnostic=opt.agnostic_nms)

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections for image i
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            save_path = str(Path(out) / Path(p).name)
            print(save_path)
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  #  normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from imgsz to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                for *xyxy, conf, cls in det:
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file:
                            file.write(('%g ' * 5 + '\n') % (cls, *xywh))  # label format

                    if save_img or view_img:  # Add bbox to image
                        # label = '%s %.2f' % (names[int(cls)], conf)
                        label = '%s' % (names[int(cls)])
                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))

python交通信号灯检测yolov5交通信号灯识别,红绿灯检测,左转右转识别

python交通信号灯检测yolov5交通信号灯识别,红绿灯检测,左转右转识别-深度学习文档类资源-CSDN下载

猜你喜欢

转载自blog.csdn.net/babyai996/article/details/123840376