gfortran gdb 调试blas代码


	PROGRAM MAIN6

	REAL A(4,6)
	REAL X(6)
	REAL Y(5)

	DATA X/6*1.0/
	DATA Y/5*0.0/
	
	CALL READIN(A,4,6)
C	CALL OPP(W,X1,X2)
C SUBROUTINE SGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
	CALL SGBMV('N',5,6,1,2,1.0,A,4,X,1,1.0,Y,1)
	DO 100, I=1,5
		PRINT*,Y(I)
100	CONTINUE
C	PRINT*,'X1=',X1,' X2=',X2

	END

	SUBROUTINE READIN(A,LDA,N)
	REAL A(LDA,N)
	WRITE(*,*) 'Enter ',LDA,'*',N,' matrix:'
	DO 10 I=1,LDA
		READ(*,*)(A(I,J),J=1,N)
10	CONTINUE
	END

	SUBROUTINE OPP(A,S1,S2)
	REAL A(5,5)
	S1=0
	DO 20 I=1,5
		S1=S1+A(I,I)
20	CONTINUE
	S2=0
	DO 30 I=1,5
		J=5-I+1
		S2=S2+A(I,J)
30	CONTINUE
	END

C SUBRU


      SUBROUTINE SGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
*
*  -- Reference BLAS level2 routine --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      REAL ALPHA,BETA
      INTEGER INCX,INCY,KL,KU,LDA,M,N
      CHARACTER TRANS
*     ..
*     .. Array Arguments ..
      REAL A(LDA,*),X(*),Y(*)
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL ONE,ZERO
      PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
*     ..
*     .. Local Scalars ..
      REAL TEMP
      INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
*     ..
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC MAX,MIN
*     ..
*
*     Test the input parameters.
*
      INFO = 0
      IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
     +    .NOT.LSAME(TRANS,'C')) THEN
          INFO = 1
      ELSE IF (M.LT.0) THEN
          INFO = 2
      ELSE IF (N.LT.0) THEN
          INFO = 3
      ELSE IF (KL.LT.0) THEN
          INFO = 4
      ELSE IF (KU.LT.0) THEN
          INFO = 5
      ELSE IF (LDA.LT. (KL+KU+1)) THEN
          INFO = 8
      ELSE IF (INCX.EQ.0) THEN
          INFO = 10
      ELSE IF (INCY.EQ.0) THEN
          INFO = 13
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('SGBMV ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
     +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
*     up the start points in  X  and  Y.
*
      IF (LSAME(TRANS,'N')) THEN
          LENX = N
          LENY = M
      ELSE
          LENX = M
          LENY = N
      END IF
      IF (INCX.GT.0) THEN
          KX = 1
      ELSE
          KX = 1 - (LENX-1)*INCX
      END IF
      IF (INCY.GT.0) THEN
          KY = 1
      ELSE
          KY = 1 - (LENY-1)*INCY
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through the band part of A.
*
*     First form  y := beta*y.
*
      IF (BETA.NE.ONE) THEN
          IF (INCY.EQ.1) THEN
              IF (BETA.EQ.ZERO) THEN
                  DO 10 I = 1,LENY
                      Y(I) = ZERO
   10             CONTINUE
              ELSE
                  DO 20 I = 1,LENY
                      Y(I) = BETA*Y(I)
   20             CONTINUE
              END IF
          ELSE
              IY = KY
              IF (BETA.EQ.ZERO) THEN
                  DO 30 I = 1,LENY
                      Y(IY) = ZERO
                      IY = IY + INCY
   30             CONTINUE
              ELSE
                  DO 40 I = 1,LENY
                      Y(IY) = BETA*Y(IY)
                      IY = IY + INCY
   40             CONTINUE
              END IF
          END IF
      END IF
      IF (ALPHA.EQ.ZERO) RETURN
      KUP1 = KU + 1
      IF (LSAME(TRANS,'N')) THEN
*
*        Form  y := alpha*A*x + y.
*
          JX = KX
          IF (INCY.EQ.1) THEN
              DO 60 J = 1,N
                  TEMP = ALPHA*X(JX)
                  K = KUP1 - J
                  DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
                      Y(I) = Y(I) + TEMP*A(K+I,J)
   50             CONTINUE
                  JX = JX + INCX
   60         CONTINUE
          ELSE
              DO 80 J = 1,N
                  TEMP = ALPHA*X(JX)
                  IY = KY
                  K = KUP1 - J
                  DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
                      Y(IY) = Y(IY) + TEMP*A(K+I,J)
                      IY = IY + INCY
   70             CONTINUE
                  JX = JX + INCX
                  IF (J.GT.KU) KY = KY + INCY
   80         CONTINUE
          END IF
      ELSE
*
*        Form  y := alpha*A**T*x + y.
*
          JY = KY
          IF (INCX.EQ.1) THEN
              DO 100 J = 1,N
                  TEMP = ZERO
                  K = KUP1 - J
                  DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
                      TEMP = TEMP + A(K+I,J)*X(I)
   90             CONTINUE
                  Y(JY) = Y(JY) + ALPHA*TEMP
                  JY = JY + INCY
  100         CONTINUE
          ELSE
              DO 120 J = 1,N
                  TEMP = ZERO
                  IX = KX
                  K = KUP1 - J
                  DO 110 I = MAX(1,J-KU),MIN(M,J+KL)
                      TEMP = TEMP + A(K+I,J)*X(IX)
                      IX = IX + INCX
  110             CONTINUE
                  Y(JY) = Y(JY) + ALPHA*TEMP
                  JY = JY + INCY
                  IF (J.GT.KU) KX = KX + INCX
  120         CONTINUE
          END IF
      END IF
*
      RETURN
*
*     End of SGBMV
*
      END






      LOGICAL FUNCTION LSAME(CA,CB)
*
*  -- Reference BLAS level1 routine --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER CA,CB
*     ..
*
* =====================================================================
*
*     .. Intrinsic Functions ..
      INTRINSIC ICHAR
*     ..
*     .. Local Scalars ..
      INTEGER INTA,INTB,ZCODE
*     ..
*
*     Test if the characters are equal
*
      LSAME = CA .EQ. CB
      IF (LSAME) RETURN
*
*     Now test for equivalence if both characters are alphabetic.
*
      ZCODE = ICHAR('Z')
*
*     Use 'Z' rather than 'A' so that ASCII can be detected on Prime
*     machines, on which ICHAR returns a value with bit 8 set.
*     ICHAR('A') on Prime machines returns 193 which is the same as
*     ICHAR('A') on an EBCDIC machine.
*
      INTA = ICHAR(CA)
      INTB = ICHAR(CB)
*
      IF (ZCODE.EQ.90 .OR. ZCODE.EQ.122) THEN
*
*        ASCII is assumed - ZCODE is the ASCII code of either lower or
*        upper case 'Z'.
*
          IF (INTA.GE.97 .AND. INTA.LE.122) INTA = INTA - 32
          IF (INTB.GE.97 .AND. INTB.LE.122) INTB = INTB - 32
*
      ELSE IF (ZCODE.EQ.233 .OR. ZCODE.EQ.169) THEN
*
*        EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or
*        upper case 'Z'.
*
          IF (INTA.GE.129 .AND. INTA.LE.137 .OR.
     +        INTA.GE.145 .AND. INTA.LE.153 .OR.
     +        INTA.GE.162 .AND. INTA.LE.169) INTA = INTA + 64
          IF (INTB.GE.129 .AND. INTB.LE.137 .OR.
     +        INTB.GE.145 .AND. INTB.LE.153 .OR.
     +        INTB.GE.162 .AND. INTB.LE.169) INTB = INTB + 64
*
      ELSE IF (ZCODE.EQ.218 .OR. ZCODE.EQ.250) THEN
*
*        ASCII is assumed, on Prime machines - ZCODE is the ASCII code
*        plus 128 of either lower or upper case 'Z'.
*
          IF (INTA.GE.225 .AND. INTA.LE.250) INTA = INTA - 32
          IF (INTB.GE.225 .AND. INTB.LE.250) INTB = INTB - 32
      END IF
      LSAME = INTA .EQ. INTB
*
*     RETURN
*
*     End of LSAME
*
      END







      SUBROUTINE XERBLA( SRNAME, INFO )
*
*  This is a special version of XERBLA to be used only as part of
*  the test program for testing error exits from the Level 2 BLAS
*  routines.
*
*  XERBLA  is an error handler for the Level 2 BLAS routines.
*
*  It is called by the Level 2 BLAS routines if an input parameter is
*  invalid.
*
*  Auxiliary routine for test program for Level 2 Blas.
*
*  -- Written on 10-August-1987.
*     Richard Hanson, Sandia National Labs.
*     Jeremy Du Croz, NAG Central Office.
*
*     .. Scalar Arguments ..
      INTEGER            INFO
      CHARACTER*6        SRNAME
*     .. Scalars in Common ..
      INTEGER            INFOT, NOUT
      LOGICAL            LERR, OK
      CHARACTER*6        SRNAMT
*     .. Common blocks ..
      COMMON             /INFOC/INFOT, NOUT, OK, LERR
      COMMON             /SRNAMC/SRNAMT
*     .. Executable Statements ..
      LERR = .TRUE.
      IF( INFO.NE.INFOT )THEN
         IF( INFOT.NE.0 )THEN
            WRITE( NOUT, FMT = 9999 )INFO, INFOT
         ELSE
            WRITE( NOUT, FMT = 9997 )INFO
         END IF
         OK = .FALSE.
      END IF
      IF( SRNAME.NE.SRNAMT )THEN
         WRITE( NOUT, FMT = 9998 )SRNAME, SRNAMT
         OK = .FALSE.
      END IF
      RETURN
*
 9999 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6, ' INSTEAD',
     $      ' OF ', I2, ' *******' )
 9998 FORMAT( ' ******* XERBLA WAS CALLED WITH SRNAME = ', A6, ' INSTE',
     $      'AD OF ', A6, ' *******' )
 9997 FORMAT( ' ******* XERBLA WAS CALLED WITH INFO = ', I6,
     $      ' *******' )
*
*     End of XERBLA
*
      END

保存为 testsgbmv.f

$gfortran ./testsgbmv.f

$gdb ./a.out

$b testsgbmv.f:171

分别输入A矩阵的4行数据:

    0   0  11 12 13 14 
    0 15  16 17 18 19
   20 21 22 23 24   0
   25 26 27 28   0   0   

,开始调试。

核心逻辑如下:

//原始带状矩阵B,m=5,n=6, ku=2, kl=1
B(5x6):
  |20 15 11          |
  |25 21 16 12       |
  |   26 22 17 13    |
  |      27 23 18 14 |
  |	        28 24 19 |

带状对齐:

    0
	0  0
  |20 15 11          |
  |25 21 16 12       |
  |   26 22 17 13    |
  |      27 23 18 14 |
  |	        28 24 19 |
                0  0  
                   0


A(4x6):
  |      11 12 13 14 |
  |   15 16 17 18 19 |
  |20 21 22 23 24    |
  |25 26 27 28       |




      KUP1 = KU + 1
      IF (LSAME(TRANS,'N')) THEN
*
*        Form  y := alpha*A*x + y.
*
          JX = KX
          IF (INCY.EQ.1) THEN
              DO 60 J = 1,N           //LL:: A 跟B一样,有N列数字, 第J列
                  TEMP = ALPHA*X(JX)  //LL:: A的同一列,跟X的同一个分量X[JX]相乘,并且累加到Y的不同分量Y[I]上
                  K = KUP1 - J        //LL:: B(1,1) is  A(KUP1,1)
                  DO 50 I = MAX(1,J-KU),MIN(M,J+KL) //LL:: MAX(1,J-KU):B中第J列 1st非零元的行号,MIN(M,J+KL):B中第J列last 非零元的行号;二者给出了本J列对Y向量的作用范围。
                      Y(I) = Y(I) + TEMP*A(K+I,J)   //LL::A(KU+1-J+I, J) is B([本列非零元行号随I从小到大],J)                 A的同一列,跟X的同一个分量X[JX]相乘,并且累加到Y的不同分量Y[I]上
   50             CONTINUE                          //LL:: 
                  JX = JX + INCX
   60         CONTINUE
          ELSE

猜你喜欢

转载自blog.csdn.net/eloudy/article/details/120779921