juc:读写锁

读写锁

先对于不加锁的情况:

如果我们做一个我们自己的cache缓存。分别有写入操作、读取操作;

我们采用五个线程去写入,使用十个线程去读取。

我们来看一下这个的效果,如果我们不加锁的情况!

package com.ogj.rw;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

public class ReadWriteLockDemo {
    public static void main(String[] args) {
        MyCache_ReadWriteLock mycache = new MyCache_ReadWriteLock();
        //开启5个线程 写入数据
        for (int i = 1; i <=5 ; i++) {
            int finalI = i;
            new Thread(()->{
                mycache.put(String.valueOf(finalI),String.valueOf(finalI));
            }).start();
        }
        //开启10个线程去读取数据
        for (int i = 1; i <=10 ; i++) {
            int finalI = i;
            new Thread(()->{
                String o = mycache.get(String.valueOf(finalI));
            }).start();
        }
    }
}

class MyCache_ReadWriteLock{
    private volatile Map<String,String> map=new HashMap<>();

    //使用读写锁
    private ReadWriteLock readWriteLock=new ReentrantReadWriteLock();
    //普通锁
    private Lock lock=new ReentrantLock();

    public void put(String key,String value){
        //写入
        System.out.println(Thread.currentThread().getName()+" 线程 开始写入");
        map.put(key, value);
        System.out.println(Thread.currentThread().getName()+" 线程 写入OK");
    }

    public String get(String key){
        //得到
        System.out.println(Thread.currentThread().getName()+" 线程 开始读取");
        String o = map.get(key);
        System.out.println(Thread.currentThread().getName()+" 线程 读取OK");
        return o;
    }
}

运行效果如下:

Thread-0 线程 开始写入
Thread-4 线程 开始写入  # 插入了其他的线程进行写入
Thread-4 线程 写入OK
Thread-3 线程 开始写入
Thread-1 线程 开始写入
Thread-2 线程 开始写入
Thread-1 线程 写入OK
Thread-3 线程 写入OK
Thread-0 线程 写入OK   # 对于这种情况会出现 数据不一致等情况
Thread-2 线程 写入OK
Thread-5 线程 开始读取
Thread-6 线程 开始读取
Thread-6 线程 读取OK
Thread-7 线程 开始读取
Thread-7 线程 读取OK
Thread-5 线程 读取OK
Thread-8 线程 开始读取
Thread-8 线程 读取OK
Thread-9 线程 开始读取
Thread-9 线程 读取OK
Thread-10 线程 开始读取
Thread-11 线程 开始读取
Thread-12 线程 开始读取
Thread-12 线程 读取OK
Thread-10 线程 读取OK
Thread-14 线程 开始读取
Thread-13 线程 开始读取
Thread-13 线程 读取OK
Thread-11 线程 读取OK
Thread-14 线程 读取OK

Process finished with exit code 0


所以如果我们不加锁的情况,多线程的读写会造成数据不可靠的问题。

我们也可以采用synchronized这种重量锁和轻量锁 lock去保证数据的可靠。

但是这次我们采用更细粒度的锁:ReadWriteLock 读写锁来保证

package com.ogj.rw;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

public class ReadWriteLockDemo {
    public static void main(String[] args) {
        MyCache_ReadWriteLock mycache = new MyCache_ReadWriteLock();
        //开启5个线程 写入数据
        for (int i = 1; i <=5 ; i++) {
            int finalI = i;
            new Thread(()->{
                mycache.put(String.valueOf(finalI),String.valueOf(finalI));
            }).start();
        }
        //开启10个线程去读取数据
        for (int i = 1; i <=10 ; i++) {
            int finalI = i;
            new Thread(()->{
                String o = mycache.get(String.valueOf(finalI));
            }).start();
        }
    }
}

class MyCache_ReadWriteLock{
    private volatile Map<String,String> map=new HashMap<>();

    //使用读写锁
    private ReadWriteLock readWriteLock=new ReentrantReadWriteLock();
    //普通锁
    private Lock lock=new ReentrantLock();

    public void put(String key,String value){
        //加锁
        readWriteLock.writeLock().lock();
        try {
            //写入
            //业务流程
            System.out.println(Thread.currentThread().getName()+" 线程 开始写入");
            map.put(key, value);
            System.out.println(Thread.currentThread().getName()+" 线程 写入OK");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            readWriteLock.writeLock().unlock(); //解锁
        }
    }

    public String get(String key){
        //加锁
        String o="";
        readWriteLock.readLock().lock();
        try {
            //得到
            System.out.println(Thread.currentThread().getName()+" 线程 开始读取");
            o = map.get(key);
            System.out.println(Thread.currentThread().getName()+" 线程 读取OK");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            readWriteLock.readLock().unlock();
        }
        return o;
    }
}

运行结果如下:

Thread-0 线程 开始写入
Thread-0 线程 写入OK
Thread-1 线程 开始写入
Thread-1 线程 写入OK
Thread-2 线程 开始写入
Thread-2 线程 写入OK
Thread-3 线程 开始写入
Thread-3 线程 写入OK
Thread-4 线程 开始写入
Thread-4 线程 写入OK

# 以上 整个过程没有再出现错乱的情况,对于读取,我们运行多个线程同时读取,
# 因为这样不会造成数据不一致问题,也能在一定程度上提高效率
Thread-9 线程 开始读取
Thread-9 线程 读取OK
Thread-10 线程 开始读取
Thread-5 线程 开始读取
Thread-11 线程 开始读取
Thread-11 线程 读取OK
Thread-10 线程 读取OK
Thread-7 线程 开始读取
Thread-7 线程 读取OK
Thread-6 线程 开始读取
Thread-5 线程 读取OK
Thread-14 线程 开始读取
Thread-8 线程 开始读取
Thread-14 线程 读取OK
Thread-6 线程 读取OK
Thread-13 线程 开始读取
Thread-12 线程 开始读取
Thread-13 线程 读取OK
Thread-8 线程 读取OK
Thread-12 线程 读取OK

猜你喜欢

转载自blog.csdn.net/s1623009261/article/details/120620198
今日推荐