Redis基础介绍

目录

一、关系数据库与非关系型数据库

1、关系型数据库

2、非关系型数据库

3、关系型数据库和非关系型数据库区别

数据存储方式不同

扩展方式不同

对事务性的支持不同

4、非关系型数据库产生背景

5、小结

二、Redis简介

1、基础介绍

2、Redis服务器程序是单进程模型

3、单进程快速的原因

使用 epoll(默认) + I/O多路复用机制

epoll 机制优势

epoll模型所实现的I/O多路复用可以定义:

4、Redis 具有以下几个优点

三、部署和命令

1、部署步骤

2、Redis命令工具

3、redis-cli 命令行工具

4、redis-benchmark 测试工具

5、Redis数据库常用命令

6、Redis 多数据库常用命令(16个库 0-15)

7、redis缓存和分布式

四、Redis 高可用

1、主要的高可用技术

五、Redis 持久化

1、持久化的功能

2、两种持久化方式

3、RDB持久化、AOF持久化区别

实现方式

文件体积

安全性

优先级

六、RDB持久化

1、触发条件:手动触发和自动触发两种

手动触发

自动触发

2、执行流程

3、启动时加载

七、AOF持久化

1、开启AOF

2、执行流程

AOF的执行流程包括:

命令追加(append)

文件写入(write)和文件同步(sync)

AOF缓存区的同步文件策略存在三种同步方式

文件重写(rewrite)

文件重写的触发,分为手动触发和自动触发:

文件重写的流程如下

启动时加载

八、RDB和AOF的优缺点

RDB持久化

AOF持久化

九、redis性能管理

1、查看redis的内存

2、内存碎片率

3、内存使用率

4、内回收key

总结


一、关系数据库与非关系型数据库

1、关系型数据库

关系型数据库是一个结构化的数据库,创建在关系模型 (二维表格模型) 基础上,一般面向于记录。
SQL语句 (标准数据查询语言) 就是一种基于关系型数据库的语言,用于执行对关系型数据库中数据的检索和操作。
主流的关系型数据库包括Oracle、MySQL(mariadb)、SQL Server、Microsoft Access、DB2等

2、非关系型数据库

NoSQL (NoSQL=NotOnlySQL),意思是“不仅仅是SQL”,是非关系型数据库的总称。除了主流的关系型数据库外的数据库,都认为是非关系型。
主流的 NoSQL 数据库有Redis、 MongoDB、 Hbase、 Memcached、Postgresql等。

3、关系型数据库和非关系型数据库区别

数据存储方式不同

关系型和非关系型数据库的主要差异是数据存储的方式。关系型数据天然就是表格式的,因此存储在数据表的行和列中。数据表可以彼此关联协作存储,也很容易提取数据。
与其相反,非关系型数据不适合存储在数据表的行和列中,而是大块组合在一起。非关系型数据通常存储在数据集中,就像文档、键值对或者图结构。你的数据及其特性是选择数据存储和提取方式的首要影响因素。
① 关系型:依赖于关系模型E-R图,同时以二维表格式的方式存储数据
② 非关系型:除了以表格形式存储之外,通常会以大块的形式组合在一起进行存储数据

扩展方式不同

SQL和NoSQL数据库最大的差别可能是在扩展方式上,要支持日益增长的需求当然要扩展。要支持更多并发量,SQL数据库是纵向扩展,也就是说提高处理能力,使用速度更快速的计算机,这样处理相同的数据集就更快了。因为数据存储在关系表中,操作的性能瓶颈可能涉及很多个表,这都需要通过提高计算机性能来克服。虽然SQL数据库有很大扩展空间,但最终肯定会达到纵向扩展的上限。
而NoSQL数据库是横向扩展的。因为非关系型数据存储天然就是分布式的,NoSQL数据库的扩展可以通过给资源池添加更多普通的数据库服务器 (节点) 来分担负载。
① 关系:纵向(天然表格式)
② 非关:横向(天然分布式)

对事务性的支持不同

如果数据操作需要高事务性或者复杂数据查询需要控制执行计划,那么传统的SQL数据库从性能和稳定性方面考虑是最佳选择。SQL数据库支持对事务(ACID)原子性细粒度控制,并且易于回滚事务。
虽然NoSQL数据库也可以使用事务操作,但稳定性方面没法和关系型数据库比较,所以它们真正闪亮的价值是在操作的扩展性和大数据量处理方面。
① 关系型:特别适合高事务性要求和需要控制执行计划的任务
② 非关系:此处会稍显弱势,其价值点在于高扩展性和大数据量处理方面

4、非关系型数据库产生背景

可用于应对Web2.0纯动态网站类型的三高问题
High performance-------对数据库高并发读写需求
HugeStorage--------------对海量数据高效存储与访问需求
High Scalability && High Availability------- 对数据库高可扩展性与高可用性需求

关系型数据库和非关系型数据库都有各自的特点与应用场景,两者的紧密结合将会给Web2.0的数据库发展带来新的思路。让关系数据库关注在关系上,非关系型数据库关注在存储上。例如,在读写分离的MySQL数据库环境中,可以把经常访问的数据存储在非关系型数据库中,提升访问速度

5、小结

关系型数据库:
实例–>数据库–>表(table)–>记录行(row)、数据字段(column)—>存储数据

非关系型数据库:
实例–>数据库–>集合(collection) -->键值对(key-value) 
workdir=/usr/local/mysql

非关系型数据库不需要手动建数据库和集合(表)

二、Redis简介

1、基础介绍

Redis是一个开源的、使用C语言编写的NoSQL 数据库。
Redis基于内存运行并支持持久化(支持存储在磁盘),采用key-value (键值对)的存储形式,是目前分布式架构中不可或缺的一环

2、Redis服务器程序是单进程模型

Redis服务在一台服务器上可以同时启动多个Redis进程,Redis的实际处理速度则是完全依靠于主进程的执行效率。若在服务器上只运行一个Redis进程,当多个客户端同时访问时,服务器的处理能力是会有一定程度的下降;若在同一台服务器上开启多个Redis进程,Redis在提高并发处理能力的同时会给服务器的CPU造成很大压力。即:在实际生产环境中,需要根据实际的需求来决定开启多少个Redis进程

建议可以开2个进程:备份;抗高并发的同时尽量不给CPU造成太大的压力
若对高并发要求更高一些,可能会考虑在同一台服务器上开启多个进程。若CPU资源比较紧张,采用单进程即可

3、单进程快速的原因

使用 epoll(默认) + I/O多路复用机制

首先,Redis 是跑在单进程中的,所有的操作都是按照顺序线性执行的,但是由于读写操作等待用户输入或输出都是阻塞的,所以 I/O 操作在一般情况下往往不能直接返回,这会导致某一文件的 I/O 阻塞导致整个进程无法对其它客户提供服务,而 I/O 多路复用就是为了解决这个问题而出现的

epoll 机制优势

epoll 没有最大并发连接的限制,上限是最大可以打开文件的数目,这个数字一般远大于 2048, 一般来说这个数目和系统内存关系很大  ,具体数目可以 cat /proc/sys/fs/file-max 察看

效率提升, Epoll 最大的优点就在于它只管你“活跃”的连接 ,而跟连接总数无关,因此在实际的网络环境中, Epoll 的效率就会远远高于 select 和 poll 

内存拷贝, Epoll 在这点上使用了“共享内存 ”,这个内存拷贝也省略了
I/O多路复用就通过一种机制,可以监视多个描述符,一旦某个描述符就绪,能够通知程序进行相应的操作

epoll模型所实现的I/O多路复用可以定义:

多个socket或者连接,首先交给I/O多路复用程序,选择活跃的socket给文件事件分派器,最后给命令处理、请求、连接应答等处理器进行回调

多个socket 会定义为一个fd文件描述符(每有一个新建、打开、修改等“事件”内核就会返回一个fd(可理解为索引)),在每个fd激活时,会进行内核中的回调函数

I/O多路复用程序会监听socket 活跃的链接,然后调用该socket (而此socket 文件句柄主要实现的是网络上的“ip+port+协议所标识的网络中的‘进程’”)可以简单理解为虚拟接口(抽象层)
本质而言就是使用一个线程来追踪多个socket(I/O流)的状态,来管理多个I/O

I/O复用:一个线程同时追踪、管理多个连接(原本默认情况下是一个线程对应一个连接)
回调:预先定义具体的执行过程(定义一个方法) ,等待调用,在一个线程给执行时,可以根据“触发器”“钩子” 完成回调,回调的目的
是提高处理性能 和节省资源

4、Redis 具有以下几个优点

具有极高的数据读写速度:数据读取的速度最高可达到 110000 次/s,数据写入速度最高可达到 81000 次/s

支持丰富的数据类型:支持key-value、 Strings、Lists、 Hashes(散列值)、 Sets 及Ordered Sets 等数据类型操作

ps:
string 字符串(可以为整形、浮点和字符型,统称为元素)
list 列表:(实现队列,元素不唯一,先入先出原则)
set  集合:(各不相同的元素)
hash  hash散列值:(hash的key必须是唯一的)
set /ordered sets 集合/有序集合

支持数据的持久化:可以将内存中的数据保存在磁盘中,重启的时候可以再次加载进行使用

原子性:Redis所有操作都是原子性的

支持数据备份:即master-salve 模式的数据备份

丰富的特性 – Redis还支持 publish(消息发布)/subscribe(订阅), 通知, 设置key有效期等特性

Redis作为基于内存运行的数据库,缓存是其最常应用的场景之一。除此之外,Redis常见应用场景还包括获取最新N个数据的操作、排行榜类应用、计数器应用、存储关系、实时分析系统、日志记录

三、部署和命令

1、部署步骤

systemctl stop firewalld
setenforce 0

yum install -y gcc gcc-c++ make

cd /opt
tar zxvf redis-5.0.7.tar.gz 

cd /opt/redis-5.0.7/
make
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了makefile文件,所以在解压完软件后,不用先执行 ./configure 进行配置,可直接执行make与make install命令进行安装

#执行软件包中提供的 install_server.sh 脚本文件设置Redis服务所需要的相关配置文件
cd /opt/redis-5.0.7/utils
./install_server.sh
#一直回车
Please select the redis executable path [/usr/local/bin/redis-server] /usr/local/redis/bin/redis-server
#需要手动修改为/usr/local/redis/bin/redis-server
----------------------------------------------------------------------------
Selected config:
Port		   :  6379									#默认监听端口6379
Config file	   :  /etc/redis/6379.conf					#配置文件路径
Log file	   :  /var/log/redis_6379.log				#日志文件路径
Data dir	   :  /var/lib/redis/6379					#数据文件路径
Executable	   :  /usr/local/redis/bin/redis-server	#可执行文件路径
Cli Executable :  /usr/local/redis/bin/redis-cli		#客户端命令工具
-----------------------------------------------------------------------------

#把redis的可执行程序文件放入路径环境变量的目录中
ln -s /usr/local/redis/bin/* /usr/local/bin/

/etc/init.d/redis_6379 stop				#停止
/etc/init.d/redis_6379 start			#启动
/etc/init.d/redis_6379 restart			#重启
/etc/init.d/redis_6379 status			#状态

#修改配置 /etc/redis/6379.conf 参数
vim /etc/redis/6379.conf
bind 127.0.0.1 192.168.255.200  #70行,添加 监听的主机地址		
port 6379			  						   #93行,Redis默认的监听端口				
daemonize yes						   #137行,启用守护进程					
pidfile /var/run/redis_6379.pid	   #159行,指定 PID 文件		
loglevel notice								#167行,日志级别								
logfile /var/log/redis_6379.log		#172行,指定日志文件		

/etc/init.d/redis_6379 restart
netstat -natp | grep redis

2、Redis命令工具

redis-server: 用于启动Redis 的工具
redis-benchmark: 用于检测Redis在本机的运行效率
redis-check-aof: 修复AOF持久化文件
redis-check-rdb: 修复RDB持久化文件
redis-cli: Redis 命令行工具

rdb 和aof 是redis服务中持久化功能的两种形式RDB AOF 
redis-cli 常用于登陆至redis 数据库 

rdb是周期化快照,aof是每条命令都会做一次保存,类似日志类型

3、redis-cli 命令行工具

语法: redis-cli -h host -p port -a password
-h :指定远程主机
-p :指定Redis 服务的端口号
-a :指定密码,未设置数据库密码可以省略-a选项
若不添加任何选项表示,则使用127.0.0.1:6379 连接本机上的 Redis 数据库,

redis-cli -h 192.168.255.200 -p 6379

4、redis-benchmark 测试工具

基本的测试语法: redis-benchmark [选项] [选项值]
-h :指定服务器主机名。
-p :指定服务器端口。
-s :指定服务器socket(套接字)
-c :指定并发连接数。
-n :指定请求数。
-d :以字节的形式指定 SET/GET 值的数据大小。
-k : 1=keep alive  0=reconnect
-r : SET/GET/INCR 使用随机key, SADD使用随机值。
-P :通过管道传输<numreq>请求。
-q :强制退出redis。 仅显示query/sec 值。
--csv :以CSV格式输出。
-l :生成循环,永久执行测试。
-t :仅运行以逗号分隔的测试命令列表。
-I : Idle模式。仅打开 N 个idle连接并等待。

#向IP地址为192.168.255.200、端口为6379 的Redis 服务器发送100个并发连接与100000 个请求测试性能
redis-benchmark -h 192.168.255.200 -p 6379 -c 100 -n 100000

#测试存取大小为100字节的数据包的性能
redis-benchmark -h 192.168.255.200 -p 6379 -q -d 100

#测试本机上Redis 服务在进行set与lpush操作时的性能
redis-benchmark -t set,lpush -n 100000 -q

#测试本机上Redis 服务在进行set与lpush操作时的性能
redis-benchmark -t set,lpush -n 100000 -q

5、Redis数据库常用命令

redis-cli -h 127.0.0.1 -p 6379

set: 存放数据,命令格式为set key value
get: 获取数据,命令格式为get key

keys命令可以取符合规则的键值列表,通常情况可以结合*、?等选项来使用

exists 命令可以判断键值是否存在

del命令可以删除当前数据库的指定key

type 命令可以获取key对应的 value 值类型

rename 命令是对已有key进行重命名。 (覆盖)
命令格式: rename 源key  目标key
使用rename命令进行重命名时,无论目标key是否存在都进行重命名,且源key的值会覆盖目标key的值。在实际使用过程中,建议先用 exists命令查看目标key是否存在,然后再决定是否执行rename命令,以避免覆盖重要数据。

renamenx: 先判断 命令的作用是对已有key进行重命名,并检测新名是否存在,如果目标key存在则不进行重命名。 (不覆盖)
命令格式: renamenx 源key  目标key

dbsize命令的作用是查看当前数据库中key的数目

使用config set requirepass your password 命令设置密码

使用config get requirepass 命令查看密码(一旦设置密码,必须先验证通过密码,否则所有操作不可用)

删除密码,以上不设置,无法重启redis

6、Redis 多数据库常用命令(16个库 0-15)

Redis支持多数据库,Redis 默认情况下包含16个数据库,数据库名称是用数字0-15 来依次命名的。多数据库相互独立,互不干扰

多数据库间切换
命令格式: select 序号
使用 redis-cli 连接Redis数据库后,默认使用的是序号为 0 的数据库

多数据库间移动数据
格式: move  键值  序号

清除数据库内数据(rm -rf )
FLUSHDB  :清空当前数据库数据
FLUSHALL :清空所有数据库的数据,慎用!

7、redis缓存和分布式

雪崩:即是如果三台redis,如果第一台出现挂机,他把所有请求给第二台,同样由于请求太多,第二台也会挂,同理第三台也会挂了,这就可以简单理解为雪崩

穿透:即redis没有用户请求的数据,数据库也没有,他还是不断的发送请求,造成数据库穿透

击穿:redis中没有数据,数据库中有,这时候,不断像数据库请求数据,造成数据库击穿

分布式锁:分布式即是10G的数据分别分成5个2G数据,进行分布式操作,这时候他要加把锁,就是在A处理数据的时候,他会加锁,这个锁可以设置过期时间或者watch dog续期,解锁也同样固定时间或者watch dog lock.unlock进行,如果锁的时候,B是无法操作的,但是可以不听的探测,在这里因为是多路复用,所以事件分发会通知B,这样也节约了资源

当多个客户端访问redis同一个关键数据时,客户端的请求修改数据时均会使用setnx,当第一个客户端的请求任务在执行修改过程中,redis 会对此数据进行加锁(可以通过固定过期时间/watch dog 的形式续期+通知lock.unlock(释放锁)的机制释放)在锁定期间,第二个客户端的请求任务不会修改数据,而是会等待

目的:缓解高并发的压力(因为本身redis使用的是单线程epoll-I/o复用的机制)所以第二个任务请求(socket所被分配的文件描述符,不是就续状态,所以不会消耗太多资源)不会占用太多资源

四、Redis 高可用

在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)
但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等

1、主要的高可用技术

持久化:持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失

主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制

哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制

集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案

五、Redis 持久化

1、持久化的功能

Redis是内存数据库,数据都是存储在内存中,为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。

2、两种持久化方式

RDB 持久化:原理是将 Reids在内存中的数据库记录定时保存到磁盘上

AOF 持久化(append only file):原理是将 Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog

3、RDB持久化、AOF持久化区别

实现方式

RDB持久化是通过将某个时间点Redis服务器存储的数据保存到RDB文件中来实现持久化的
AOF持久化是通过将Redis服务器执行的所有写命令保存到AOF文件中来实现持久化的

文件体积

由以上实现方式可知,RDB持久化记录的是结果,AOF持久化记录的是过程,所以AOF持久化生成的AOF文件会有体积越来越大的问题,Redis提供了AOF重写功能来减小AOF文件体积。

安全性

AOF持久化的安全性要比RDB持久化的安全性高,即如果发生机器故障,AOF持久化要比RDB持久化丢失的数据要少
因为RDB持久化会丢失上次RDB持久化后写入的数据,而AOF持久化最多丢失1s之内写入的数据(使用默认everysec配置的话)

优先级

由于以上的安全性问题,如果Redis服务器开启了AOF持久化功能,Redis服务器在启动时会使用AOF文件来还原数据,如果Redis服务器没有开启acr持久化功能,Redis服务器在启动时会使用RDB文件来还原数据,所以AOF文件的优先级比RDB文件的优先级高

六、RDB持久化

RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。

1、触发条件:手动触发和自动触发两种

手动触发

save命令和bgsave命令都可以生成RDB文件
save命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。而bgsave命令会创建一个子进程,由子进程来负责创建RDB文件,父进程〈即Redis主进程)则继续处理请求
bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用。往往生产环境bgsave依然不允许轻易使用

自动触发

在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化
自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave

vim /etc/redis/6379.conf
#----219行----以下三个save条件满足任意一个时,都会引起bgsave的调用
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave
#----242行----是否开启RDB文件压缩
rdbcompression yes
#----254行----指定RDB文件名
dbfilename dump.rdb
#----264行----指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379

 其他触发机制

除了save m n 以外,还有一些其他情况会触发bgsave:

在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点,执行shutdown命令时,自动执行rdb持久化

2、执行流程

Redis父进程首先判断:当前是否在执行save,或bgave/bgrewriteaof的子进程,如果在执行则bgsave命令直接返回。bgsave/bgrewriteaof的子进程不能同时执行,主要是基于性能方面的考虑:两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题

父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令

父进程fork后,bqsave命令返回"Backcyround saving started"信息并不再阻塞父进程,并可以响应其他命令

子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换

子进程发送信号给父进程表示完成,父进程更新统计信息

3、启动时加载

ROB文件的载入工.作是在服务器启动时自动执行的,并没有专门的命令。但是由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。服及务器载入RDB文件期间处于阻塞状态,直到载入完成为止,。Redis载入RDB文件时,会对RDB文件进行校验,如果文件损环,则日志中会打印错误,Redis启动失败

七、AOF持久化

RDB持久化是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日老文件中,查询操作不会记录;当Redis重启时优先执行AOF文件中的命令来恢复数据。
RDB相比.AOF的实时性更好,国此己成为主流的持久化方案。

1、开启AOF

Redis服务器默认开启RDB,关闭AOF:要开启AOF,需要在配置文件中配置:

Redis服务器默认开启RDB,关闭AOF;要开启AOF,需要在配置文件中配置:

vim /etc/redis/6379.conf

#----700行----修改;开启AOF
appendonly yes
#----704行----指定AOF文件名称
appendfilename "appendonly.aof"
#----796行----是否忽略最后一条可能存在问题的指令
aof-load-truncated yes
#指redis在恢复时,会忽略最后一条可能存在问题的指令,默认为yes,即在aof写入时,可能存在指令错误的问题(突然断电导致未执行结束),这种情况下,yes会log并继续,而no会直接恢复失败

/etc/init.d/redis_6379 restart
#需要先取消密码

2、执行流程

 由于需要记录Redis的每条写命令,因此AOF不需要触发,下面介绍AOF的执行流程

AOF的执行流程包括:

命令追加(append):将Redis的写命令追加到缓冲区aof_buf
文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘
文件重写(rewrite):定期重写AOF文件,达到压缩的目的

命令追加(append)

Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈

命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令

文件写入(write)和文件同步(sync)

Redis提供了多种Aor爱存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数
为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然批高了效率,但也带来了灾全问题:如果计算机停机,内存缓冲区中的数据会丢火;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。

AOF缓存区的同步文件策略存在三种同步方式

它们分别是:(vim /etc/redis/6379.conf  729行 

appendfsync always:

命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。

appendfsync no:

命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。

appendfsync everysec:

命令写入aof_buf后调用系统write操作,write完成后线程返回;fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置

文件重写(rewrite)

随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大;过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长
文件重写是指定期重写AOF文件,减小AOF文件的体积

AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件
不会对旧的AOF文件进行任何读取、写入操作

对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些实现中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行

文件重写之所以能够压缩AOF文件,原因在于:
	过期的数据不再写入文件
	无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、有些数据被删除了(sadd myset v1, del myset)等。
	多条命令可以合并为一个:如sadd myset v1, sadd myset v2, sadd myset v3可以合并为sadd myset v1 v2 v3。

通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。

文件重写的触发,分为手动触发和自动触发:

手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。

自动触发:通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。 只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。

auto-aof-rewrite-percentage 100 :当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
auto-aof-rewrite-min-size 64mb :当前AOF文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF

vim /etc/redis/6379.conf
#----729行----
auto-aof-rewrite-percentage 100
#当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)的两倍时,发生bgrewriteaof操作
auto-aof-rewrite-min-size 64mb 
#当前AOF文件执行bgrewriteaof命令的最小值,避免刚开始启动redis时由于文件尺寸较小导致频繁的bgrewriteaof

注意:
	重写由父进程fork子进程进行
	重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_rewrite_buf缓存。

文件重写的流程如下

Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在 bgsave命令则等bgsave执行完成后再执行

父进程执行fork操作创建子进程,这个过程中父进程是阻塞的

父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程, 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确

由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区

子进程根据内存快照,按照命令合并规则写入到新的AOF文件

子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看

父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致

使用新的AOF文件替换老文件,完成AOF重写

启动时加载

当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据

当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载

Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。aof-load-truncated参数默认是开启的
 

八、RDB和AOF的优缺点

RDB持久化

优点:RDB文件紧淡,体积小,网貉传输快,适合全量复制;恢复速度比AOF快很多。当然,与AOF相比,RDB最重要的优点之一是对性能的影响相对较小。

缺点:RDB文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化,而在数据越来越重要的今天,数据的大量丢失很多时候是无法接受的,因此AoF持久化成为主流。此外,RDB文件需要涧足特定格式,兼容性差(如老版本的Redis不兼容新版本的RDB文件)。
对于RDB持久化,一方面是bqsave在进行fork操作的时Redis主进程会阻塞,另一方面,子进程向硬盘写数据也会带来IO压力。

AOF持久化

与RDB持久化相对应,AoF的优点在于支持秒级持久化、兼容性好,缺点是文件大、恢复速度慢、对性能影响大
对于AoF持久化,向硬盘写数据的频率大大提高(everysec策略下为秒级),IO压力更大,甚至可能造成AOF追加阻塞问题
AOF文件的服写与RDB的bgsave类似,公有iforxk时的阻塞和子进程的IO压力问题。相对来说,由于AOF向硬盘中写数据的频率更高,因此对Redis主进程性能的影响公更大

九、redis性能管理

1、查看redis的内存

redis-cli -h 192.168.255.180 -p 6379
info memory

2、内存碎片率

操作系统分配的内存值used_memory_rss除以Redis使用的内存值used_memory计算得出内存碎片是由操作系统低效的分配/回收物理内存导致的(不连续的物理内存分配)

跟踪内存碎片率对理解Redis实例的资源性能是非常重要的:
内存碎片率稍大于1是合理的,这个值表示内存碎片率比较低
内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150%,其中50%是内存碎片率。需要在redis-cli工具上输入shutdown save 命令,并重启 Redis 服务器。
内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少 Redis 内存占用

3、内存使用率

redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换

避免内存交换发生的方法:

针对缓存数据大小选择安装 Redis 实例、尽可能的使用Hash数据结构存储、设置key的过期时间

4、内回收key

保证合理分配redis有限的内存资源。

当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除

配置文件中修改 maxmemory-policy 属性值:

vim /etc/redis/6379.conf
#----598取消注释----
maxmemory-policy noenviction

volatile-lru	:使用LRU算法从已设置过期时间的数据集合中淘汰数据
volatile-ttl	:从已设置过期时间的数据集合中挑选即将过期的数据淘汰
volatile-random	:从已设置过期时间的数据集合中随机挑选数据淘汰
allkeys-lru		:使用LRU算法从所有数据集合中淘汰数据
allkeys-random	:从数据集合中任意选择数据淘汰
noenviction		:禁止淘汰数据

总结

RBD执行流程从bgsave操作完成,然后由主进程工作,派生一个fork子进程,这些rdb持久化任务,然后保存为rdb的文件,做完保存文件后,会通知master主进程,主进程会回收子进程和解除堵塞,保证资源的充分利用,然后在派生子进程去工作;bgsave触发方式有自动和手动方式,在处理的时候会自动压缩和配置文件是自动开启的

AOF执行流程,在缓存中我们会存储一些高热数据,采用的是命中的机制,通过append追加策略到缓冲中(no,always,everysec),根据配置文件的写入策略,在保存在磁盘中,因为AOF写的是语句,所以会定期进行rewrite重写(清理过期keys对应语句,清理无效命令,合并多条命令),过期的key有淘汰的策略,默认是惰性删除

区别:保存文件的实现方式、文件大小、安全性、优先级

缓冲区压力大:可以采用淘汰机制,定期清除,在停止业务或者不忙的时候,或者优先级低,命中率低的内容;增加漏桶和令牌桶,筛选重要主业务流量

1、redis 是一种非关数据库(内存/缓存)
redis 相比于其他非关数据库优势的地方主要在于:o数据类型丰富
持久化(可以将内存种的数据保存在磁盘中)形式为: RDB 与AOF
使用epoll+I/o复用以及回调机制提升单线程模型的处理性能减少资源消耗

2、redis集群模式:哨兵、主从、cluster(集群)
redis 的集群模式,同时也可以理解为是redis 的高可用模式
主从:提供了备份冗余,缺点:无法针对故障进行自动修复,写操作无法负载均衡哨兵:以主从为基础提供了故障自动修复的功能,写操作无法负载均衡
集群:基于主从基础,解决了故障自动修复、写操作负载均衡的问题,同时对于资源需求相较于前两种集群得到了一定的改善

3、高可用中的持久化
RDB 和AOF
(1)持久化方式:RDB :周期性的快照
AOF :接近实时的持久化(以everysec方式)

(2 ) redis 启用的优先级
AOF > RDB,同时仅当AoF功能关闭的情况下,redis才会在重新启动时使用RDB的方式进行恢复(3) RDB 和AOF 中持久化模式
RDB :由redis主进程(周期性)fork派生出子进程对redis内存中的数据进行持久化,生成到.rdb文件中
AOF :根据持久化策略(alawys、no、everysec(默认)),先将redis中的语句保存在缓冲区中,再从缓冲区同步到.aof文件中

4、redis的恢复策略/优势
redis 与其他常用非关数据库类似,都是将数据保存在内存中
而保存在内存中时,当redis重启,内存数据丢失,但redis通过RDB或AOF的持久化功能可以在redis进行重启之后,优先读取AOF文件,基于AOF文件进行数据恢复这种方式来"持久化保存"数据

5、流量控

制漏桶
令牌桶

6、淘汰策略缺认是惰性删除随机淘汰
淘汰近期命中较少的数据、定期删除,保证两种持久化,同时业务不繁忙的时候处理
为了解决缓存压力过大而导致使用swap交换分区以及牵扯到的其他功能模块问题其他功能块:AOF的持久化
 

猜你喜欢

转载自blog.csdn.net/y1035793317/article/details/121200922
今日推荐