Python基础——os模块和“魔法”方法

os模块练习

import os
# print(os.getcwd())

# os.chdir('E:\\')
# print(os.getcwd())

# print(os.listdir())

# print(os.listdir('F:\\'))

# os.mkdir('test')
# os.makedirs(r'.\a\b\c')#在当前目录下创建多层目录
# os.makedirs(r'F:\a\b\c')#在F盘下创建多层目录
# os.chdir('a')
# print(os.listdir())

# os.chdir(r'a\b\c')
# print(os.listdir())
# os.remove('test.txt')
# os.rmdir('c')
# print(os.getcwd())
# os.chdir(r'f:\course')
# print(os.getcwd())
# os.rmdir('test')
# os.removedirs(r'a\b\c')

# os.system('calc')
# os.system('mspaint')

# for i in os.walk(r'F:\course\test'):
#     print(i)

# print(os.getcwd())

# print(os.path.dirname(r'F:\course\test\b\b.txt'))
# print(os.path.basename(r'F:\course\test\b\b.txt'))
#
# print(os.path.split(r'F:\course\test\b\b.txt'))
# print(os.path.splitext(r'F:\course\test\b\b.txt'))
#
# print(os.path.getsize(r'F:\course\test\b\b.txt'))
#
# import time
# temp = time.localtime(os.path.getatime(r'F:\course\test\b\b.txt'))
# print(temp)
#
# import pickle
# my_list = [123,3.14,'小甲鱼',['I love python','abc']]
# p_file = open('f:\\a.pkl','wb')
# pickle.dump(my_list,p_file)
# p_file.close()
#
# o_p_file = open('f:\\a.pkl','rb')
# t = pickle.load(o_p_file)
# print(t)

# f_name = input('请输入一个文件名:')
# f = open(f_name,'r')
# print('文件内容是:')
#
# for e in f:
#     print(e)
#
# 语法结构
# try:
#     检测范围
# except exception[as reason]:
#     出现异常(exception)后的处理代码

# f = open('我为什么是一个文档.txt')
# print(f.read())
# f.close()

# try:
#     f = open('我为什么是一个文档.txt')
#     print(f.read())
#     f.close()
# except OSError as reason:
#     print('文件打开过程中出错了\n错误的原因是:' + str(reason))
#
# try:
#     f = open('我是一个不存在文档.txt')
#     print(f.read())
#     f.close()
#     sum = 1 + '1'
# except OSError as reason:
#     print('文件打开过程中出错了\n错误的原因是:' + str(reason))
# except TypeError as reason:
#     print('类型出错了\n错误的原因是:' + str(reason))

# try:
#     # int('abc')
#     # sum = 1 + '1'
#     f = open('我是一个不存在文档.txt')
#     print(f.read())
#     f.close()
# except (ValueError,TypeError,OSError) as reason:
#     print('出错了\n错误的原因是:' + str(reason))


# try:
#     s = 1 + '1'
#     int("abc")
#     f = open('test111.txt')
#     print(f.read())
#     f.close()
# except (OSError, TypeError, ValueError) as error:
#     print('出错了!\n原因是:' + str(error))

# try:
#     f = open('kk.txt')
#     print(f.read())
#     sum = 1 + "1"
#     f.close()
# except:
#     print('出错了')


# try:
#     f = open('kk.txt')
#     print(f.read())
#     sum = 1 + "1"
# except:
#     print('出错了')
# finally:
#     f.close()

# raise ZeroDivisionError

# raise ZeroDivisionError('除数不能为零')

def showMaxFac(num):
    count = num // 2
    while count > 1:
        if num % count == 0:
            print('%d最大的约数是%d'% (num,count))
            break
        count -= 1
    else:
        print('%d是素数'% num)
num = int(input('请输入一个数:'))
showMaxFac(num)

魔法方法练习

# print(type(len))
# print(type(int))
#
# class C:
#     pass
# print(type(C))
#
# c = C()
# a = int('123')
# # print(a)
# b = int('123')
# print(a + b)
#
# class N_int(int):
#     def __add__(self, other):
#         return int.__sub__(self,other)
#     def __sub__(self, other):
#         return int.__add__(self,other)

# a = N_int(3)
# b = N_int(4)
#
# print(a+b)#-1
# print(a-b)

# class T_int(int):
#     def __add__(self, other):
#         return int(self) + int(other)
#     def __sub__(self, other):
#         return int(self) - int(other)
# a = T_int(4)
# b = T_int(5)
# print(a + b)

# class Nint(int):
#
#     def __radd__(self, other):
#         return int.__sub__(self,other)
#
#
# a = Nint(3)
# b = Nint(5)
#
# print(a+b)
# print(1 + b)

# import time as t
# class MyTimer:
#     def __init__(self):
#         self.prompt = "未开始计时!"
#         self.lasted = []
#         self.start = 0
#         self.stop = 0
#
#     def __init__(self):
#         self.unit = ['年', '月', '天', '小时', '分钟', '秒']
#         self.prompt = "未开始计时!"
#         self.lasted = []
#         self.begin = 0
#         self.end = 0
#
#     # 开始计时
#     def start(self):
#         self.begin = t.localtime()
#         self.prompt = "提示:请先调用 stop() 开始计时!"
#         print("计时开始...")
#
#     # 停止计时
#     def stop(self):
#         if not self.begin:
#             print("提示:请先调用 start() 开始计时!")
#         else:
#             self.end = t.localtime()
#             self._calc()
#             print("计时结束!")
#
#     # 计算运行时间
#     def _calc(self):
#         self.lasted = []
#         self.prompt = "总共运行了"
#         for index in range(6):
#             self.lasted.append(self.end[index] - self.begin[index])
#             if self.lasted[index]:
#                 self.prompt += (str(self.lasted[index]) + self.unit[index])
#         # 为下一轮计算初始化变量
#         self.begin = 0
#         self.end = 0
#
#     # 重写add方法
#     def __add__(self, other):
#         prompt = "总共运行了"
#         result = []
#         for index in range(6):
#             result.append(self.lasted[index] + other.lasted[index])
#             if result[index]:
#                 prompt += (str(result[index]) + self.unit[index])
#         return prompt
#
#     def __str__(self):
#         return self.prompt
#
#     __repr__ = __str__
#
# t1 = MyTimer()
# print(t1)
# t1.start()
# t1.stop()
# print(t1)

# class C:
#     def __init__(self):
#         self.x = 'x-man'
# c = C()
# print(c.x)
# print(getattr(c,'x','没有该属性'))
# print(getattr(c,'y','没有该属性'))
#
# setattr(c,'y','s-man')
# print(getattr(c,'y'))
#
# print(c.__dict__)

# class C:
#     def __init__(self,size = 10):
#         self.size = size
#
#     def getSize(self):
#         return self.size
#     def setSize(self,value):
#         self.size = value
#     def delSize(self):
#         del self.size
#
#     x = property(getSize,setSize,delSize)
# c = C()
# print(c.x)
#
# c.x = 15
# print(c.x)

# c.setSize(20)
# print(c.getSize())

# class C:
#     def __getattribute__(self, name):
#         print('getattribute')
#         return super().__getattribute__(name)
#
#     def __setattr__(self, name, value):
#         print('setattr')
#         super().__setattr__(name,value)
#
#     def __delattr__(self, name):
#         print('delattr')
#         super().__delattr__(self,name)
#
#     def __getattr__(self, name):
#         print('getattr')
#
# c = C()
# print(c.x)
# c.x = 1
# print(c.x)

class Rect:
    def __init__(self,w = 0,h = 0):
        self.w = w
        self.h = h
    def __setattr__(self, name, value):
        if name == 'square':
            self.w = value
            self.h = value
        else:
            # super().__setattr__(name,value)
            self.__dict__[name] = value
            # self.name = value
    def getA(self):
        return self.w * self.h

r1 = Rect(3,4)
print(r1.getA())

猜你喜欢

转载自blog.csdn.net/m0_52000372/article/details/116278480