课程学习 CV 北京邮电大学 鲁鹏(笔记四:CV经典网络讲解 之 VGG)

VGG

VGG论文:Very deep convolutional networks for large-scale image recognition
VGGNet由牛津大学的视觉几何组(Visual Geometry Group)提出,主要贡献在于证明了使用3x3的小卷积核,增加网络深度,可以有效提升模型性能,并且对于其他数据集也有很好的泛化性能。

VGG的结构简洁,整个网络都使用同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。到目前为止,VGG仍然被用来提取图像特征。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
定义卷积函数

def conv2d(x, W, b, strides=1):
    # Conv2D wrapper, with bias and relu activation
    x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
    x = tf.nn.bias_add(x, b)
    return tf.nn.relu(x)

定义池化函数

def maxpool2d(x, k=2):
    # MaxPool2D wrapper
    return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME')

定义VGG结构

def conv_net(x, weights, biases, dropout):
    # Reshape input picture  x.shape:(128,128,3)
    x = tf.reshape(x, shape=[-1, 128, 128, 3])

    # Convolution Layer
    conv1 = conv2d(x, weights['wc1'], biases['bc1'])
    conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
    # Max Pooling (down-sampling)
    pool1 = maxpool2d(conv2, k=2)
    print(pool1.shape)  # (64,64,64)

    # Convolution Layer
    conv3 = conv2d(pool1, weights['wc3'], biases['bc3'])
    conv4 = conv2d(conv3, weights['wc4'], biases['bc4'])
    # Max Pooling (down-sampling)
    pool2 = maxpool2d(conv4, k=2)
    print(pool2.shape)  # (32,32,128)

    # Convolution Layer
    conv5 = conv2d(pool2, weights['wc5'], biases['bc5'])
    conv6 = conv2d(conv5, weights['wc6'], biases['bc6'])
    conv7 = conv2d(conv6, weights['wc7'], biases['bc7'])
    # Max Pooling
    pool3 = maxpool2d(conv7, k=2)
    print(pool3.shape)  # (16,16,256)

    # Convolution Layer
    conv8 = conv2d(pool3, weights['wc8'], biases['bc8'])
    conv9 = conv2d(conv8, weights['wc9'], biases['bc9'])
    conv10 = conv2d(conv9, weights['wc10'], biases['bc10'])
    # Max Pooling
    pool4 = maxpool2d(conv10, k=2)
    print(pool4.shape)  # (8,8,512)

    conv11 = conv2d(pool4, weights['wc11'], biases['bc11'])
    conv12 = conv2d(conv11, weights['wc12'], biases['bc12'])
    conv13 = conv2d(conv12, weights['wc13'], biases['bc13'])
    # Max Pooling
    pool5 = maxpool2d(conv13, k=2)
    print(pool5.shape)  # (4,4,512)

    # Fully connected layer
    # Reshape conv2 output to fit fully connected layer input
    fc1 = tf.reshape(pool5, [-1, weights['wd1'].get_shape().as_list()[0]])
    fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
    fc1 = tf.nn.relu(fc1)
    # Apply Dropout
    fc1 = tf.nn.dropout(fc1, dropout)

    # fc2 = tf.reshape(fc1, [-1, weights['wd2'].get_shape().as_list()[0]])
    fc2 = tf.add(tf.matmul(fc1, weights['wd2']), biases['bd2'])
    fc2 = tf.nn.relu(fc2)
    # Apply Dropout
    fc2 = tf.nn.dropout(fc2, dropout)
    '''
    fc3 = tf.reshape(fc2, [-1, weights['out'].get_shape().as_list()[0]])
    fc3 = tf.add(tf.matmul(fc2, weights['out']), biases['bd2'])
    fc3 = tf.nn.relu(fc2)
    '''
    # Output, class prediction
    out = tf.add(tf.matmul(fc2, weights['out']), biases['out'])
    return out

定义权重

weights = {
    
    
    # 3x3 conv, 3 input, 24 outputs
    'wc1': tf.Variable(tf.random_normal([3, 3, 3, 64])),
    'wc2': tf.Variable(tf.random_normal([3, 3, 64, 64])),

    'wc3': tf.Variable(tf.random_normal([3, 3, 64, 128])),
    'wc4': tf.Variable(tf.random_normal([3, 3, 128, 128])),

    'wc5': tf.Variable(tf.random_normal([3, 3, 128, 256])),
    'wc6': tf.Variable(tf.random_normal([3, 3, 256, 256])),
    'wc7': tf.Variable(tf.random_normal([3, 3, 256, 256])),

    'wc8': tf.Variable(tf.random_normal([3, 3, 256, 512])),
    'wc9': tf.Variable(tf.random_normal([3, 3, 512, 512])),
    'wc10': tf.Variable(tf.random_normal([3, 3, 512, 512])),

    'wc11': tf.Variable(tf.random_normal([3, 3, 512, 512])),
    'wc12': tf.Variable(tf.random_normal([3, 3, 512, 512])),
    'wc13': tf.Variable(tf.random_normal([3, 3, 512, 512])),
    # fully connected, 32*32*96 inputs, 1024 outputs
    'wd1': tf.Variable(tf.random_normal([4 * 4 * 512, 1024])),
    'wd2': tf.Variable(tf.random_normal([1024, 1024])),
    # 1024 inputs, 10 outputs (class prediction)
    'out': tf.Variable(tf.random_normal([1024, 10]))}

定义偏置

biases = {
    
    
    'bc1': tf.Variable(tf.random_normal([64])),
    'bc2': tf.Variable(tf.random_normal([64])),
    'bc3': tf.Variable(tf.random_normal([128])),
    'bc4': tf.Variable(tf.random_normal([128])),
    'bc5': tf.Variable(tf.random_normal([256])),
    'bc6': tf.Variable(tf.random_normal([256])),
    'bc7': tf.Variable(tf.random_normal([256])),
    'bc8': tf.Variable(tf.random_normal([512])),
    'bc9': tf.Variable(tf.random_normal([512])),
    'bc10': tf.Variable(tf.random_normal([512])),
    'bc11': tf.Variable(tf.random_normal([512])),
    'bc12': tf.Variable(tf.random_normal([512])),
    'bc13': tf.Variable(tf.random_normal([512])),
    'bd1': tf.Variable(tf.random_normal([1024])),
    'bd2': tf.Variable(tf.random_normal([1024])),
    'out': tf.Variable(tf.random_normal([10]))}

Construct model

pred = conv_net(x, weights, biases, keep_prob)

# Define loss and optimizer损失and优化
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Initializing the variables
init = tf.global_variables_initializer()
saver = tf.train.Saver()

VGG网络的大体结构就定义好了,只要初始化变量,设置Session,定义输入图像就可以跑了

猜你喜欢

转载自blog.csdn.net/weixin_44845357/article/details/120701758