三相电路的构成

1. 三相电源

此处只介绍对称三相电源。

(1) 电压大小

电压瞬时表达式:

  • u a = 2 U c o s ( ω t ) u_a = \sqrt{2}Ucos(\omega t ) ua=2 Ucos(ωt)
  • u b = 2 U c o s ( ω t − 120 ° ) u_b = \sqrt{2}Ucos(\omega t- 120°) ub=2 Ucos(ωt120°)
  • u c = 2 U c o s ( ω t + 120 ° ) u_c = \sqrt{2}Ucos(\omega t + 120°) uc=2 Ucos(ωt+120°)

电压相量形式:

  • U ˙ A = U ∠ 0 ° \dot{U}_A = U∠0° U˙A=U0°
  • U ˙ B = U ∠ − 120 ° \dot{U}_B = U∠-120° U˙B=U120°
  • U ˙ C = U ∠ 120 ° \dot{U}_C = U∠120° U˙C=U120°

特点:
u a + u b + u c = 0 u_a+u_b+u_c = 0 ua+ub+uc=0

U ˙ A + U ˙ B + U ˙ C = 0 \dot{U}_A+\dot{U}_B+\dot{U}_C = 0 U˙A+U˙B+U˙C=0

(2) 联结方式

① Y形联结

在这里插入图片描述
联结描述:各个电源的负端接在一起。

② 三角形联结

在这里插入图片描述
连接描述:各个电源依次首尾相连,组成一个闭环。

特点:
U ˙ A + U ˙ B + U ˙ C = 0 \dot{U}_A + \dot{U}_B + \dot{U}_C = 0 U˙A+U˙B+U˙C=0
I = 0 I = 0 I=0
没有中性点

2. 三相负载

(1) 联结方式

① Y形联结

在这里插入图片描述

Z A = Z B = Z C Z_{A} =Z_{B} =Z_{C} ZA=ZB=ZC,则为三相对称负载

② 三角形联结

在这里插入图片描述

Z A B = Z B C = Z C A Z_{AB} =Z_{BC} =Z_{CA} ZAB=ZBC=ZCA,则为三相对称负载

3. 三相输电线路

4. 三相电路的联结方式

(1) Y − △ Y-\triangle Y

线电压与相电压的关系:
U ˙ A B = 3 U ˙ A ∠ 30 ° U ˙ B C = 3 U ˙ B ∠ 30 ° U ˙ C A = 3 U ˙ C ∠ 30 ° } \left.\begin{matrix}\dot{U}_{AB} = \sqrt{3}\dot{U}_A∠30° \\\dot{U}_{BC} = \sqrt{3}\dot{U}_B∠30° \\\dot{U}_{CA} = \sqrt{3}\dot{U}_C∠30° \end{matrix}\right\} U˙AB=3 U˙A30°U˙BC=3 U˙B30°U˙CA=3 U˙C30°

线电流与相电流的关系:

I ˙ A = 3 I ˙ A ′ B ′ ∠ − 30 ° I ˙ B = 3 I ˙ B ′ C ′ ∠ − 30 ° I ˙ C = 3 I ˙ C ′ A ′ ∠ − 30 ° } \left.\begin{matrix}\dot{I}_{A} = \sqrt{3}\dot{I}_{A'B'}∠-30° \\\dot{I}_{B} = \sqrt{3}\dot{I}_{B'C'}∠-30° \\\dot{I}_{C} = \sqrt{3}\dot{I}_{C'A'}∠-30° \end{matrix}\right\} I˙A=3 I˙AB30°I˙B=3 I˙BC30°I˙C=3 I˙CA30°

(2) Y − Y Y-Y YY

线电压与相电压的关系:
U ˙ A B = 3 U ˙ A ∠ 30 ° U ˙ B C = 3 U ˙ B ∠ 30 ° U ˙ C A = 3 U ˙ C ∠ 30 ° } \left.\begin{matrix}\dot{U}_{AB} = \sqrt{3}\dot{U}_A∠30° \\\dot{U}_{BC} = \sqrt{3}\dot{U}_B∠30° \\\dot{U}_{CA} = \sqrt{3}\dot{U}_C∠30° \end{matrix}\right\} U˙AB=3 U˙A30°U˙BC=3 U˙B30°U˙CA=3 U˙C30°

线电流与相电流的关系
I ˙ A = I ˙ A ′ B ′ I ˙ B = I ˙ B ′ C ′ I ˙ C = I ˙ C ′ A ′ } \left.\begin{matrix}\dot{I}_{A} = \dot{I}_{A'B'} \\\dot{I}_{B} = \dot{I}_{B'C'} \\\dot{I}_{C} = \dot{I}_{C'A'} \end{matrix}\right\} I˙A=I˙ABI˙B=I˙BCI˙C=I˙CA

(3) △ − △ \triangle-\triangle

线电压与相电压的关系
U ˙ A B = U ˙ A U ˙ B C = U ˙ B U ˙ C A = U ˙ C } \left.\begin{matrix}\dot{U}_{AB} =\dot{U}_A \\\dot{U}_{BC} = \dot{U}_B \\\dot{U}_{CA} =\dot{U}_C \end{matrix}\right\} U˙AB=U˙AU˙BC=U˙BU˙CA=U˙C

线电流与相电流的关系
I ˙ A = 3 I ˙ A ′ B ′ ∠ − 30 ° I ˙ B = 3 I ˙ B ′ C ′ ∠ − 30 ° I ˙ C = 3 I ˙ C ′ A ′ ∠ − 30 ° } \left.\begin{matrix}\dot{I}_{A} = \sqrt{3}\dot{I}_{A'B'}∠-30° \\\dot{I}_{B} = \sqrt{3}\dot{I}_{B'C'}∠-30° \\\dot{I}_{C} = \sqrt{3}\dot{I}_{C'A'}∠-30° \end{matrix}\right\} I˙A=3 I˙AB30°I˙B=3 I˙BC30°I˙C=3 I˙CA30°

(4) △ − Y \triangle-Y Y

线电压与相电压的关系
U ˙ A B = U ˙ A U ˙ B C = U ˙ B U ˙ C A = U ˙ C } \left.\begin{matrix}\dot{U}_{AB} =\dot{U}_A \\\dot{U}_{BC} = \dot{U}_B \\\dot{U}_{CA} =\dot{U}_C \end{matrix}\right\} U˙AB=U˙AU˙BC=U˙BU˙CA=U˙C

线电流与相电流的关系
I ˙ A = I ˙ A ′ B ′ I ˙ B = I ˙ B ′ C ′ I ˙ C = I ˙ C ′ A ′ } \left.\begin{matrix}\dot{I}_{A} = \dot{I}_{A'B'} \\\dot{I}_{B} = \dot{I}_{B'C'} \\\dot{I}_{C} = \dot{I}_{C'A'} \end{matrix}\right\} I˙A=I˙ABI˙B=I˙BCI˙C=I˙CA

猜你喜欢

转载自blog.csdn.net/qq_35912930/article/details/115306050
今日推荐