已知<G,∗>是群,u∈G,定义“△”为a△b=a∗u−1∗b,∀a,b∈G,证明<G,△>为含幺半群

已知 < G , ∗ > <G,*> <G,>是群, u ∈ G u\in G uG,定义“ △ \triangle ”为 a △ b = a ∗ u − 1 ∗ b a\triangle b=a*u^{-1}*b ab=au1b, ∀ a , b ∈ G \forall a,b\in G a,bG,证明 < G , △ > <G,\triangle> <G,>为含幺半群。

∵ \because < G , ∗ > <G,*> <G,>是群, u ∈ G u\in G uG

∴ \therefore u − 1 ∈ G u^{-1}\in G u1G

∴ ∀ a , b , ∈ G , a ∗ u − 1 ∗ b ∈ G \therefore \forall a,b, \in G,a*u^{-1}*b\in G a,b,G,au1bG

∵ a △ b = a ∗ u − 1 ∗ b \because a\triangle b=a*u^{-1}*b ab=au1b

∴ < G , △ > \therefore <G,\triangle> <G,>是封闭的

∵ ∀ a , b , c ∈ G , ( a △ b ) △ c = a △ ( b △ c ) = a ∗ u − 1 ∗ b ∗ u − 1 ∗ c \because \forall a,b,c\in G,(a\triangle b)\triangle c=a\triangle (b\triangle c)=a*u^{-1}*b*u^{-1}*c a,b,cG,(ab)c=a(bc)=au1bu1c

∴ < G , △ > \therefore <G,\triangle> <G,>是半群

∀ a ∈ G , a △ u = a ∗ u − 1 ∗ u = a ∗ e = a \forall a\in G ,a\triangle u=a*u^{-1}*u=a*e=a aG,au=au1u=ae=a

u △ a = u ∗ u − 1 ∗ a = e ∗ a = a u\triangle a=u*u^{-1}*a=e*a=a ua=uu1a=ea=a

∴ u 是 半 群 < G , △ > \therefore u是半群<G,\triangle> u<G,>的幺元

∴ < G , △ > \therefore <G,\triangle> <G,>是含幺半群.

猜你喜欢

转载自blog.csdn.net/qq_41870170/article/details/114831646
G