面试经典必问:ReentrantLock 中CLH队列

ReentrantLock 中的加锁操作都是通过Syn这个抽象类来完成,具体解析在之前得博客已经分析过了,请参考:ReentrantLock AQS操作解析

得不到锁的线程,如何排队?

JUC中锁的排队策略,是基于CLH队列的变种实现的。因此,我们先看看啥是CLH队列

CLH队列

如上图所示,获取不到锁的线程,会进入队尾,然后自旋,直到其前驱线程释放锁。可能会有同学问为啥有2种指针在node上面,这个之后会在解释
这样做的好处:假设有1000个线程等待获取锁,锁释放后,只会通知队列中的第一个线程去竞争锁,减少了并发冲突。(ZK的分布式锁,为了避免惊群效应,也使用了类似的方式:获取不到锁的线程只监听前一个节点)

为什么说JUC中的实现是基于CLH的“变种”,因为原始CLH队列,一般用于实现自旋锁。而JUC中的实现,获取不到锁的线程,一般会时而阻塞,时而唤醒。

UC中的CLH队列实现

我们来看看AbstractQueuedSynchronizer类中的acquire方法实现

    
    public final void acquire(int arg) {
        //尝试获取锁
        if (!tryAcquire(arg) &&
            //获取不到,则进入等待队列,返回是否中断
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            //如果返回中断,则调用当前线程的interrupt()方法
            selfInterrupt();
    }

入队

如果线程调用tryAcquire(其最终实现是调用上面分析过的nonfairTryAcquire方法)获取锁失败。则首先调用addWaiter(Node.EXCLUSIVE)方法,将自己加入CLH队列的尾部。

    private Node addWaiter(Node mode) {
        //线程对应的Node
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        //尾节点不为空
        if (pred != null) {
            //当前node的前驱指向尾节点
            node.prev = pred;
            //将当前node设置为新的尾节点
            //如果cas操作失败,说明线程竞争
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        //lockfree的方式插入队尾
        enq(node);
        return node;
    }
    private Node enq(final Node node) {
        //经典的lockfree算法:循环+CAS
        for (;;) {
            Node t = tail;
            //尾节点为空
            if (t == null) { // Must initialize
                //初始化头节点
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

入队过程,入下图所示

1 T0持有锁时,其CLH队列的头尾指针为NULL (没有任何node来获取锁时,锁会给到默认得head-node持有,也就是T0)

2 线程T1,此时请求锁,由于锁被T0占有。因此加入队列尾部。具体过程如下所示:
(1) 初始化头节点
(2) 初始化T1节点,入队,尾指针指向T1

3 此时如果有一个T10线程先于T1入队,则T1执行compareAndSetTail(t, node)会失败,然后回到for循环开始处,重新入队。

由自旋到阻塞

入队后,调用acquireQueued方法,时而自旋,时而阻塞,直到获取锁(或被取消)。

  final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                //其前驱是头结点,并且再次调用tryAcquire成功获取锁
                if (p == head && tryAcquire(arg)) {
                    //将自己设为头结点
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    //成功获取锁,返回
                    return interrupted;
                }
                //没有得到锁时:
                //shouldParkAfterFailedAcquire方法:返回是否需要阻塞当前线程
                //parkAndCheckInterrupt方法:阻塞当前线程,当线程再次唤醒时,返回是否被中断
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    //修改中断标志位
                    interrupted = true;
            }
        } finally {
            if (failed)
                //获取锁失败,则将此线程对应的node的waitStatus改为CANCEL
                cancelAcquire(node);
        }
    }
    
    private void setHead(Node node) {
        head = node;
        node.thread = null;
        node.prev = null;
    }
    
      /**
     * 获取锁失败时,检查并更新node的waitStatus。
     * 如果线程需要阻塞,返回true。
     */
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        
        //前驱节点的waitStatus是SIGNAL。
        if (ws == Node.SIGNAL)
            /* 
             * SIGNAL状态的节点,释放锁后,会唤醒其后继节点。
             * 因此,此线程可以安全的阻塞(前驱节点释放锁时,会唤醒此线程)。
             */
            return true;
            
        //前驱节点对应的线程被取消
        if (ws > 0) {
            do {
                //跳过此前驱节点
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
               此时,需要将前驱节点的状态设置为SIGNAL。
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }
     //当shouldParkAfterFailedAcquire方法返回true,则调用parkAndCheckInterrupt方法阻塞当前线程
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }

自旋过程,入下图所示



然后线程T2,加入了请求锁的队列,尾指针后移。

终上所述,每个得不到锁的线程,都会讲自己封装成Node,加入队尾,或自旋或阻塞,直到获取锁

锁的释放

前文提到,T1,T2在阻塞之前,都回去修改其前驱节点的waitStatus=-1。这是为什么?
我们看下锁释放的代码,便一目了然

    public final boolean release(int arg) {
        //修改锁计数器,如果计数器为0,说明锁被释放
        if (tryRelease(arg)) {
            Node h = head;
            //head节点的waitStatus不等于0,说明head节点的后继节点对应的线程,正在阻塞,等待被唤醒
            if (h != null && h.waitStatus != 0)
                //唤醒后继节点
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
    
   
    private void unparkSuccessor(Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);

      
        //后继节点
        Node s = node.next;
        //如果s被取消,跳过被取消节点
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            //唤醒后继节点
            LockSupport.unpark(s.thread);
    }

如代码所示,waitStatus=-1的作用,主要是告诉释放锁的线程:后面还有排队等待获取锁的线程,请唤醒他!

释放锁的过程,如图所示:


 

猜你喜欢

转载自blog.csdn.net/wmq880204/article/details/114393128
clh