synchronized的加锁方式与锁的升级过程

 

synchronized的特性

原子性

所谓原子性就是指一个操作或者多个操作,要么全部执行并且执行的过程不会被任何因素打断,要么就都不执行。

在Java中,对基本数据类型的变量的读取和赋值操作是原子性操作,即这些操作是不可被中断的,要么执行,要么不执行。但是像i++、i+=1等操作字符就不是原子性的,它们是分成读取、计算、赋值几步操作,原值在这些步骤还没完成时就可能已经被赋值了,那么最后赋值写入的数据就是脏数据,无法保证原子性。

被synchronized修饰的类或对象的所有操作都是原子的,因为在执行操作之前必须先获得类或对象的锁,直到执行完才能释放,这中间的过程无法被中断(除了已经废弃的stop()方法),即保证了原子性。

注意!面试时经常会问比较synchronized和volatile,它们俩特性上最大的区别就在于原子性,volatile不具备原子性。

 

可见性

可见性是指多个线程访问一个资源时,该资源的状态、值信息等对于其他线程都是可见的。

synchronized和volatile都具有可见性,其中synchronized对一个类或对象加锁时,一个线程如果要访问该类或对象必须先获得它的锁,而这个锁的状态对于其他任何线程都是可见的,并且在释放锁之前会将对变量的修改刷新到主存当中,保证资源变量的可见性,如果某个线程占用了该锁,其他线程就必须在锁池中等待锁的释放。

而volatile的实现类似,被volatile修饰的变量,每当值需要修改时都会立即更新主存,主存是共享的,所有线程可见,所以确保了其他线程读取到的变量永远是最新值,保证可见性。

 

有序性

有序性值程序执行的顺序按照代码先后执行。

扫描二维码关注公众号,回复: 12791330 查看本文章

synchronized和volatile都具有有序性,Java允许编译器和处理器对指令进行重排,但是指令重排并不会影响单线程的顺序,它影响的是多线程并发执行的顺序性。synchronized保证了每个时刻都只有一个线程访问同步代码块,也就确定了线程执行同步代码块是分先后顺序的,保证了有序性。

 

可重入性

synchronized和ReentrantLock都是可重入锁。当一个线程试图操作一个由其他线程持有的对象锁的临界资源时,将会处于阻塞状态,但当一个线程再次请求自己持有对象锁的临界资源时,这种情况属于重入锁。通俗一点讲就是说一个线程拥有了锁仍然还可以重复申请锁。

 

 

1.synchronized的三种加锁方式

对于普通同步方法,锁是当前实例对象(对象锁)

在这种使用方式中,要注意锁是对象的实例,因为要保证多个线程使用的是同一个实例,否则仍然会有问题。

比如如下代码,因为每个线程的实例是不同的,因为他们获取的都不是同一把锁

 

 

要想执行结果正确,就必须保证多个线程的实例是相同的,如下所示:

 

 

 

 

 

对于静态同步方法,锁是当前类Class对象(类锁)

 

 

 

 

 

  • 对于同步方法块,锁是Synchronized括号里配置的对象

      1.括号里的对象是class对象

 

 

括号里的对象是当前实例

 

 

 

java对象头

在JVM中,对象在内存中的布局分为三块区域:对象头实例数据对齐填充。如下

 

  • 实例数据:存放类的属性数据信息,包括父类的属性信息,如果是数组的实例部分还包括数组的长度,这部分内存按4字节对齐。
  • 填充数据:由于虚拟机要求对象起始地址必须是8字节的整数倍。填充数据不是必须存在的,仅仅是为了字节对齐,这点了解即可。
  • 对象头:synchronized用的锁是存在Java对象头里的。如果对象是数组类型,则虚拟机用3个字宽(Word)存储对象头,如果对象是非数组类型,则用2字宽存储对象头。在32位虚拟机中,1字宽等于4字节,即32bit

 

Mark Word

Mark Word记录了对象和锁有关的信息,当这个对象被synchronized关键字当成同步锁时,围绕这个锁的一系列操作都和Mark Word有关。

 

Mark Word在32位JVM中的长度是32bit,在64位JVM中长度是64bit。

 

Mark Word在不同的锁状态下存储的内容不同,在32位JVM中是这么存的:

 

其中无锁和偏向锁的锁标志位都是01,只是在前面的1bit区分了这是无锁状态还是偏向锁状态。

JDK1.6以后的版本在处理同步锁时存在锁升级的概念,JVM对于同步锁的处理是从偏向锁开始的,随着竞争越来越激烈,处理方式从偏向锁升级到轻量级锁,最终升级到重量级锁。

锁膨胀

上面讲到锁有四种状态,并且会因实际情况进行膨胀升级,其膨胀方向是:无锁——>偏向锁——>轻量级锁——>重量级锁,并且膨胀方向不可逆。

偏向锁

一句话总结它的作用:减少统一线程获取锁的代价。在大多数情况下,锁不存在多线程竞争,总是由同一线程多次获得,那么此时就是偏向锁。

核心思想:

如果一个线程获得了锁,那么锁就进入偏向模式,此时Mark Word的结构也就变为偏向锁结构,当该线程再次请求锁时,无需再做任何同步操作,即获取锁的过程只需要检查Mark Word的锁标记位为偏向锁以及当前线程ID等于Mark Word的ThreadID即可,这样就省去了大量有关锁申请的操作。

轻量级锁

在未锁定的状态下,可以通过CAS来抢锁,抢到的是轻量级锁

轻量级锁是由偏向锁升级而来,当存在第二个线程申请同一个锁对象时,偏向锁就会立即升级为轻量级锁。注意这里的第二个线程只是申请锁,不存在两个线程同时竞争锁,可以是一前一后地交替执行同步块。

重量级锁

重量级锁是由轻量级锁升级而来,当同一时间有多个线程竞争锁时,锁就会被升级成重量级锁,此时其申请锁带来的开销也就变大。

重量级锁一般使用场景会在追求吞吐量,同步块或者同步方法执行时间较长的场景。

举例:

 

处于Runnable状态而还没运行的线程1,会去抢owner,抢到之后开启偏向锁,线程运行。

2、此时如果有线程2来抢锁,那么锁会升级成轻量级锁。

3、如果线程2抢不到锁(线程1还没有释放锁),那么线程2会自旋继续抢锁,自旋有一定的限制,自旋超过一定的次数,锁再次升级为重量级锁,抢不到锁的线程会进入锁池等待执行

4、如果线程2,抢到了锁(在线程2开始之前,线程1已经释放了锁),那么锁还是偏向锁的状态。

 

补充:

自旋锁与自适应自旋锁

轻量级锁失败后,虚拟机为了避免线程真实地在操作系统层面挂起,还会进行一项称为自旋锁的优化手段。

自旋锁:许多情况下,共享数据的锁定状态持续时间较短,切换线程不值得,通过让线程执行循环等待锁的释放,不让出CPU。如果得到锁,就顺利进入临界区。如果还不能获得锁,那就会将线程在操作系统层面挂起,这就是自旋锁的优化方式。但是它也存在缺点:如果锁被其他线程长时间占用,一直不释放CPU,会带来许多的性能开销。

自适应自旋锁:这种相当于是对上面自旋锁优化方式的进一步优化,它的自旋的次数不再固定,其自旋的次数由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定,这就解决了自旋锁带来的缺点。

 

有关synchronized的底层实现,还没有讲,后续在JVM中再详细聊聊,今天就总结到这里。

猜你喜欢

转载自blog.csdn.net/huzhiliayanghao/article/details/106539113