Yolov3整理

网络结构

相比于 YOLOv2 的 骨干网络,YOLOv3 进行了较大的改进。借助残差网络的思想,YOLOv3 将原来的 darknet-19 改进为darknet-53。论文中给出的整体结构如下:

Darknet-53主要由1×1和3×3的卷积层组成,每个卷积层之后包含一个批量归一化层和一个Leaky ReLU,加入这两个部分的目的是为了防止过拟合。卷积层、批量归一化层以及Leaky ReLU共同组成Darknet-53中的基本卷积单元DBL。因为在Darknet-53中共包含53个这样的DBL,所以称其为Darknet-53。

为了更加清晰地了解darknet-53的网络结构,可以看下面这张图:

为了更好的理解此图,下面我将主要单元进行说明:

  • DBL: 一个卷积层、一个批量归一化层和一个Leaky ReLU组成的基本卷积单元。
  • res unit: 输入通过两个DBL后,再与原输入进行add;这是一种常规的残差单元。残差单元的目的是为了让网络可以提取到更深层的特征,同时避免出现梯度消失或爆炸。
  • resn: 其中的n表示n个res unit;所以 resn = Zero Padding + DBL + n × res unit 。
  • concat: 将darknet-53的中间层和后面的某一层的上采样进行张量拼接,达到多尺度特征融合的目的。这与残差层的add操作是不一样的,拼接会扩充张量的维度,而add直接相加不会导致张量维度的改变。
  • Y1、Y2、Y3: 分别表示YOLOv3三种尺度的输出。

与darknet-19对比可知,darknet-53主要做了如下改进:

  • 没有采用最大池化层,转而采用步长为2的卷积层进行下采样。
  • 为了防止过拟合,在每个卷积层之后加入了一个BN层和一个Leaky ReLU。
  • 引入了残差网络的思想,目的是为了让网络可以提取到更深层的特征,同时避免出现梯度消失或爆炸。
  • 将网络的中间层和后面某一层的上采样进行张量拼接,达到多尺度特征融合的目的。

改进之处

YOLOv3最大的改进之处还在于网络结构的改进,由于上面已经讲过。因此下面主要对其它改进方面进行介绍:

(1)多尺度预测
为了能够预测多尺度的目标,YOLOv3 选择了三种不同shape的Anchors,同时每种Anchors具有三种不同的尺度,一共9种不同大小的Anchors。在COCO数据集上选择的9种Anchors的尺寸如下图红色框所示

借鉴特征金字塔网的思想,YOLOv3设计了3种不同尺度的网络输出Y1、Y2、Y3,目的是预测不同尺度的目标。由于在每一个尺度网格都负责预测3个边界框,且COCO数据集有80个类。所以网络输出的张量应该是:N ×N ×[3∗(4 + 1 + 80)]。由下采样次数不同,得到的N不同,最终Y1、Y2、Y3的shape分别为:[13, 13, 255]、[26, 26, 255]、[52, 52, 255]。可见参见原文:

(2)损失函数
对于神经网络来说,损失函数的设计也非常重要。但是YOLOv3这篇文中并没有直接给出损失函数的表达式。下面通过对源码的分析,给出YOLOv3的损失函数表达式:

 对比YOLOv1中的损失函数很容易知道:位置损失部分并没有改变,仍然采用的是sum-square error的损失计算方法。但是置信度损失和类别预测均由原来的sum-square error改为了交叉熵的损失计算方法。对于类别以及置信度的预测,使用交叉熵的效果应该更好.

(3)多标签分类

YOLOv3在类别预测方面将YOLOv2的单标签分类改进为多标签分类,在网络结构中将YOLOv2中用于分类的softmax层修改为逻辑分类器。在YOLOv2中,算法认定一个目标只从属于一个类别,根据网络输出类别的得分最大值,将其归为某一类。然而在一些复杂的场景中,单一目标可能从属于多个类别。

比如在一个交通场景中,某目标的种类既属于汽车也属于卡车,如果用softmax进行分类,softmax会假设这个目标只属于一个类别,这个目标只会被认定为汽车或卡车,这种分类方法就称为单标签分类。如果网络输出认定这个目标既是汽车也是卡车,这就被称为多标签分类。

为实现多标签分类就需要用逻辑分类器来对每个类别都进行二分类。逻辑分类器主要用到了sigmoid函数,它可以把输出约束在0到1,如果某一特征图的输出经过该函数处理后的值大于设定阈值,那么就认定该目标框所对应的目标属于该类。

待补充。。。。。。。。。。。

猜你喜欢

转载自blog.csdn.net/wzhrsh/article/details/110818276