基于Redis Cluster的分布式锁实现以互斥方式操作共享资源


今天要说的技术方案也是有一定项目背景的。在上一个项目中,我们需要对一个redis集群中过期的key进行处理,这是一个分布式系统,考虑到高可用性,需要具备过期处理功能的服务有多个副本,这样我们就要求在同一时间内仅有一个副本可以对过期的key进行处理,如果该副本挂掉,系统会在其他副本中再挑选出一个来处理过期的key。

很显然,这里涉及到一个选主(leader election)的过程。每当涉及选主,很多人就会想到一些高大上的分布式一致性/共识算法,比如:raft[1]、paxos[2]等。当然使用这些算法自然没有问题,但是也给系统徒增了很多复杂性。能否有一些更简单直接的方案呢?我们已经有了一个redis集群,是否可以利用redis集群的能力来完成这一点呢?

Redis原生并没有提供leader election算法,但Redis作者提供了分布式锁的算法[3],也就是说我们可以用分布式锁来实现一个简单的选主功能,见下图:


图:利用redis分布式锁实现选主

在上图中我们看到,只有持有锁的服务才具备操作数据的资格,也就是说持有锁的服务的角色是leader,而其他服务则继续尝试去持有锁,它们是follower的角色。

1. 基于单节点redis的分布式锁

在redis官方有关分布式锁算法的介绍页面[4]中,作者给出了各种编程语言的推荐实现,而Go语言的推荐实现仅redsync[5]这一种。在这篇短文中,我们就来使用redsync实现基于Redis分布式锁的选主方案。

在Go生态中,连接和操作redis的主流go客户端库有go-redis[6]和redigo[7]。最新的redsync版本底层redis driver既支持go-redis,也支持redigo,我个人日常使用最多的是go-redis这个客户端,这里我们就用go-redis。

redsync github主页中给出的例子是基于单redis node的分布式锁示例。下面我们也先以单redis节点来看看如何通过Redis的分布式锁实现我们的业务逻辑:

// github.com/bigwhite/experiments/blob/master/redis-cluster-distributed-lock/standalone/main.go

     1 package main
     2 
     3 import (
     4  "context"
     5  "log"
     6  "os"
     7  "os/signal"
     8  "sync"
     9  "sync/atomic"
    10  "syscall"
    11  "time"
    12 
    13  goredislib "github.com/go-redis/redis/v8"
    14  "github.com/go-redsync/redsync/v4"
    15  "github.com/go-redsync/redsync/v4/redis/goredis/v8"
    16 )
    17 
    18 const (
    19  redisKeyExpiredEventSubj = `__keyevent@0__:expired`
    20 )
    21 
    22 var (
    23  isLeader  int64
    24  m         atomic.Value
    25  id        string
    26  mutexName = "the-year-of-the-ox-2021"
    27 )
    28 
    29 func init() {
    30  if len(os.Args) < 2 {
    31   panic("args number is not correct")
    32  }
    33  id = os.Args[1]
    34 }
    35 
    36 func tryToBecomeLeader() (bool, func() (bool, error), error) {
    37  client := goredislib.NewClient(&goredislib.Options{
    38   Addr: "localhost:6379",
    39  })
    40  pool := goredis.NewPool(client)
    41  rs := redsync.New(pool)
    42 
    43  mutex := rs.NewMutex(mutexName)
    44 
    45  if err := mutex.Lock(); err != nil {
    46   client.Close()
    47   return false, nil, err
    48  }
    49 
    50  return true, func() (bool, error) {
    51   return mutex.Unlock()
    52  }, nil
    53 }
    54 
    55 func doElectionAndMaintainTheStatus(quit <-chan struct{}) {
    56  ticker := time.NewTicker(time.Second * 5)
    57  var err error
    58  var ok bool
    59  var cf func() (bool, error)
    60 
    61  c := goredislib.NewClient(&goredislib.Options{
    62   Addr: "localhost:6379",
    63  })
    64  defer c.Close()
    65  for {
    66   select {
    67   case <-ticker.C:
    68    if atomic.LoadInt64(&isLeader) == 0 {
    69     ok, cf, err = tryToBecomeLeader()
    70     if ok {
    71      log.Printf("prog-%s become leader successfully\n", id)
    72      atomic.StoreInt64(&isLeader, 1)
    73      defer cf()
    74     }
    75     if !ok || err != nil {
    76      log.Printf("prog-%s try to become leader failed: %s\n", id, err)
    77     }
    78    } else {
    79     log.Printf("prog-%s is the leader\n", id)
    80     // update the lock live time and maintain the leader status
    81     c.Expire(context.Background(), mutexName, 8*time.Second)
    82    }
    83   case <-quit:
    84    return
    85   }
    86  }
    87 }
    88 
    89 func doExpire(quit <-chan struct{}) {
    90  // subscribe the expire event of redis
    91  c := goredislib.NewClient(&goredislib.Options{
    92   Addr: "localhost:6379"})
    93  defer c.Close()
    94 
    95  ctx := context.Background()
    96  pubsub := c.Subscribe(ctx, redisKeyExpiredEventSubj)
    97  _, err := pubsub.Receive(ctx)
    98  if err != nil {
    99   log.Printf("prog-%s subscribe expire event failed: %s\n", id, err)
   100   return
   101  }
   102  log.Printf("prog-%s subscribe expire event ok\n", id)
   103 
   104  // Go channel which receives messages from redis db
   105  ch := pubsub.Channel()
   106  for {
   107   select {
   108   case event := <-ch:
   109    key := event.Payload
   110    if atomic.LoadInt64(&isLeader) == 0 {
   111     break
   112    }
   113    log.Printf("prog-%s 收到并处理一条过期消息[key:%s]", id, key)
   114   case <-quit:
   115    return
   116   }
   117  }
   118 }
   119 
   120 func main() {
   121  var wg sync.WaitGroup
   122  wg.Add(2)
   123  var quit = make(chan struct{})
   124 
   125  go func() {
   126   doElectionAndMaintainTheStatus(quit)
   127   wg.Done()
   128  }()
   129  go func() {
   130   doExpire(quit)
   131   wg.Done()
   132  }()
   133 
   134  c := make(chan os.Signal, 1)
   135  signal.Notify(c, syscall.SIGINT, syscall.SIGTERM)
   136  _ = <-c
   137  close(quit)
   138  log.Printf("recv exit signal...")
   139  wg.Wait()
   140  log.Printf("program exit ok")
   141 }

上面示例代码比较长,但它很完整。我们一点点来看。

首先,我们看120~141行的main函数结构。在这个函数中,我们创建了两个新goroutine,main goroutine通过sync.WaitGroup等待这两个子goroutine的退出并使用quit channel模式(关于goroutine的并发模式的详解,可以参考我的专栏文章《Go并发模型和常见并发模式》[8])在收到系统信号(关于signal包的使用,请参见我的专栏文章《小心被kill!不要忽略对系统信号的处理》[9])后通知两个子goroutine退出。

接下来,我们逐个看两个子goroutine的执行逻辑。第一个goroutine执行的是doElectionAndMaintainTheStatus函数。该函数会持续尝试去持有分布式锁(tryToBecomeLeader),一旦持有,它就变成了分布式系统中的leader角色;成为leader角色的副本会保持其角色状态(见81行)。

尝试持有分布式锁并成为leader是tryToBecomeLeader函数的主要职责,该函数直接使用了redsync包的算法,并利用与redis node建立的连接(NewClient),尝试建立并持有分布式锁“the-year-of-the-ox-2021”。我们使用的是默认的锁属性,从redsync包的NewMutex方法源码,我们能看到锁默认属性如下:

// github.com/go-redsync/redsync/redsync.go

// NewMutex returns a new distributed mutex with given name.
func (r *Redsync) NewMutex(name string, options ...Option) *Mutex {
        m := &Mutex{
                name:         name,
                expiry:       8 * time.Second,
                tries:        32,
                delayFunc:    func(tries int) time.Duration { return 500 * time.Millisecond },
                genValueFunc: genValue,
                factor:       0.01,
                quorum:       len(r.pools)/2 + 1,
                pools:        r.pools,
        }
        for _, o := range options {
                o.Apply(m)
        }
        return m
}

我们看到锁有一个过期时间属性(expiry),过期时间默认仅有8秒。问题来了:一旦锁过期了,那么情况会怎样?事实是一旦锁过期掉,在leader尚未解锁时,其follower也会加锁成功,因为原锁的key已经因过期而被删除掉了。长此以往,整个分布式系统就会存在多个自视为leader的进程,整个处理逻辑就乱了!

解决这个问题至少可以有三种方案:

  • 方案1:将锁的expiry设置的很长,长到一旦某个服务持有了锁,不需担心锁过期的问题;

  • 方案2:在所的默认expiry到期之前解锁,所有服务重新竞争锁;

  • 方案3:一旦某个服务持有了锁,则需要定期重设锁的expiry时间,保证锁不会过期,直到该服务主动执行unlock。

方案1的问题在于,一旦持有锁的leader因意外异常退出并且尚未unlock,那么由于锁的过期时间超级长,其他follower依然无法持有锁而变成下一任leader,导致整个分布式系统的leader缺失,业务逻辑无法继续进行;

方案2其实是基于Redis分布式锁的常规使用方式,但对于像我这里的业务场景,频繁lock和unlock没必要,我只需要保证系统中有一个leader一直在处理过期event即可,在服务间轮流处理并非我的需求。但这个方案是一个可行的方案,代码逻辑清晰也简单。

方案3则是非常适合我的业务场景的方案,持有锁的leader通过定期(<8s)的更新锁的过期时间来保证锁的有效性,这样避免了leader频繁切换。这里我们就使用了这一方案,见78~82行,我们在定时器的帮助下,定期重新设置了锁的过期时间(8s)。

在上述示例代码中,我们用一个变量isLeader来标识该服务是否持有了锁,由于该变量被多个goroutine访问和修改,因此我们通过atomic包实现对其的原子访问以避免出现race问题。

最后,我们说说这段示例承载的业务逻辑(doExpire函数)。真正的业务逻辑由doExpire函数实现。它通过监听redis 0号库的key空间的过期事件实现对目标key的过期处理(这里并未体现这一点)。

subscribe的subject字符串为**keyevent@0:expired**,这个字符串的组成含义可以参考redis官方对notifications的说明[10],这里的字串表明我们要监听key事件,在0号数据库,事件类型是key过期。

当在0号数据库有key过期后,我们的订阅channel(105行)就会收到一个事件,通过event的Payload我们可以得到key的名称,后续我们可以根据key的名字来过滤掉我们不关心的key,而仅对期望的key做相应处理。

在默认配置下, redis的通知功能处于关闭状态。我们需要通过命令或在redis.conf中开启这一功能。

$redis-cli
127.0.0.1:6379> config set notify-keyspace-events KEx
OK

到这里,我们已经搞清楚了上面示例代码的原理,下面我们就来真实运行一次上面的代码,我们编译上面代码并启动三个实例:

$go build main.go
$./main 1
$./main 2
$./main 3

由于**./main 1**先启动,因此第一个启动的服务一般会先成为leader:

$main 1
2021/02/11 05:43:15 prog-1 subscribe expire event ok
2021/02/11 05:43:20 prog-1 become leader successfully
2021/02/11 05:43:25 prog-1 is the leader
2021/02/11 05:43:30 prog-1 is the leader

而其他两个服务会定期尝试去持有锁:

$main 2 
2021/02/11 05:43:17 prog-2 subscribe expire event ok
2021/02/11 05:43:37 prog-2 try to become leader failed: redsync: failed to acquire lock
2021/02/11 05:43:53 prog-2 try to become leader failed: redsync: failed to acquire lock

$main 3
2021/02/11 05:43:18 prog-3 subscribe expire event ok
2021/02/11 05:43:38 prog-3 try to become leader failed: redsync: failed to acquire lock
2021/02/11 05:43:54 prog-3 try to become leader failed: redsync: failed to acquire lock

这时我们通过redis-cli在0号数据库中创建一个key1,过期时间5s:

$redis-cli
127.0.0.1:6379> setex key1 5 value1
OK

5s后,我们会在prog-1这个服务实例的输出日志中看到如下内容:

2021/02/11 05:43:50 prog-1 is the leader
2021/02/11 05:43:53 prog-1 收到并处理一条过期消息[key:key1]
2021/02/11 05:43:55 prog-1 is the leader

接下来,我们停掉prog-1:

2021/02/11 05:44:00 prog-1 is the leader
^C2021/02/11 05:44:01 recv exit signal...
redis: 2021/02/11 05:44:01 pubsub.go:168: redis: discarding bad PubSub connection: read tcp [::1]:56594->[::1]:6379: use of closed network connection
2021/02/11 05:44:01 program exit ok

在停掉prog-1后的瞬间,prog-2成功持有了锁,并成为leader:

2021/02/11 05:44:01 prog-2 become leader successfully
2021/02/11 05:44:01 prog-2 is the leader

我们再通过redis-cli在0号数据库中创建一个key2,过期时间5s:

$redis-cli
127.0.0.1:6379> setex key2 5 value2
OK

5s后,我们会在prog-2这个服务实例的输出日志中看到如下内容:

2021/02/11 05:44:17 prog-2 is the leader
2021/02/11 05:44:19 prog-2 收到并处理一条过期消息[key:key2]
2021/02/11 05:44:22 prog-2 is the leader

从运行的结果来看,该分布式系统的运行逻辑是符合我们的设计预期的。

2. 基于redis集群的分布式锁

上面,我们实现了基于单个redis节点的分布式锁的选主功能。在生产环境,我们很少会使用单节点的Redis,通常会使用Redis集群以保证高可用性。

最新的redsync已经支持了redis cluster(基于go-redis)[11]。和单节点唯一不同的是,我们传递给redsync的pool所使用的与redis的连接由Client类型变为了ClusterClient类型:

// github.com/bigwhite/experiments/blob/master/redis-cluster-distributed-lock/cluster/v1/main.go
const (
        redisClusterMasters      = "localhost:30001,localhost:30002,localhost:30003"
)

func main() {
 ... ...
        client := goredislib.NewClusterClient(&goredislib.ClusterOptions{
                Addrs: strings.Split(redisClusterMasters, ",")})
        defer client.Close()
 ... ...
}

我们在本地启动的redis cluster,三个master的地址分别为:localhost:30001、localhost:30002和localhost:30003。我们将master的地址组成一个逗号分隔的常量redisClusterMasters。

我们对上面单节点的代码做了改进,将Redis连接的创建放在了main中,并将client连接作为参数传递给各个goroutine的运行函数。下面是cluster版示例代码完整版(v1):

// github.com/bigwhite/experiments/blob/master/redis-cluster-distributed-lock/cluster/v1/main.go

     1 package main
     2 
     3 import (
     4  "context"
     5  "log"
     6  "os"
     7  "os/signal"
     8  "strings"
     9  "sync"
    10  "sync/atomic"
    11  "syscall"
    12  "time"
    13 
    14  goredislib "github.com/go-redis/redis/v8"
    15  "github.com/go-redsync/redsync/v4"
    16  "github.com/go-redsync/redsync/v4/redis/goredis/v8"
    17 )
    18 
    19 const (
    20  redisKeyExpiredEventSubj = `__keyevent@0__:expired`
    21  redisClusterMasters      = "localhost:30001,localhost:30002,localhost:30003"
    22 )
    23 
    24 var (
    25  isLeader  int64
    26  m         atomic.Value
    27  id        string
    28  mutexName = "the-year-of-the-ox-2021"
    29 )
    30 
    31 func init() {
    32  if len(os.Args) < 2 {
    33   panic("args number is not correct")
    34  }
    35  id = os.Args[1]
    36 }
    37 
    38 func tryToBecomeLeader(client *goredislib.ClusterClient) (bool, func() (bool, error), error) {
    39  pool := goredis.NewPool(client)
    40  rs := redsync.New(pool)
    41 
    42  mutex := rs.NewMutex(mutexName)
    43 
    44  if err := mutex.Lock(); err != nil {
    45   return false, nil, err
    46  }
    47 
    48  return true, func() (bool, error) {
    49   return mutex.Unlock()
    50  }, nil
    51 }
    52 
    53 func doElectionAndMaintainTheStatus(c *goredislib.ClusterClient, quit <-chan struct{}) {
    54  ticker := time.NewTicker(time.Second * 5)
    55  var err error
    56  var ok bool
    57  var cf func() (bool, error)
    58 
    59  for {
    60   select {
    61   case <-ticker.C:
    62    if atomic.LoadInt64(&isLeader) == 0 {
    63     ok, cf, err = tryToBecomeLeader(c)
    64     if ok {
    65      log.Printf("prog-%s become leader successfully\n", id)
    66      atomic.StoreInt64(&isLeader, 1)
    67      defer cf()
    68     }
    69     if !ok || err != nil {
    70      log.Printf("prog-%s try to become leader failed: %s\n", id, err)
    71     }
    72    } else {
    73     log.Printf("prog-%s is the leader\n", id)
    74     // update the lock live time and maintain the leader status
    75     c.Expire(context.Background(), mutexName, 8*time.Second)
    76    }
    77   case <-quit:
    78    return
    79   }
    80  }
    81 }
    82 
    83 func doExpire(c *goredislib.ClusterClient, quit <-chan struct{}) {
    84  // subscribe the expire event of redis
    85  ctx := context.Background()
    86  pubsub := c.Subscribe(ctx, redisKeyExpiredEventSubj)
    87  _, err := pubsub.Receive(ctx)
    88  if err != nil {
    89   log.Printf("prog-%s subscribe expire event failed: %s\n", id, err)
    90   return
    91  }
    92  log.Printf("prog-%s subscribe expire event ok\n", id)
    93 
    94  // Go channel which receives messages from redis db
    95  ch := pubsub.Channel()
    96  for {
    97   select {
    98   case event := <-ch:
    99    key := event.Payload
   100    if atomic.LoadInt64(&isLeader) == 0 {
   101     break
   102    }
   103    log.Printf("prog-%s 收到并处理一条过期消息[key:%s]", id, key)
   104   case <-quit:
   105    return
   106   }
   107  }
   108 }
   109 
   110 func main() {
   111  var wg sync.WaitGroup
   112  wg.Add(2)
   113  var quit = make(chan struct{})
   114  client := goredislib.NewClusterClient(&goredislib.ClusterOptions{
   115   Addrs: strings.Split(redisClusterMasters, ",")})
   116  defer client.Close()
   117 
   118  go func() {
   119   doElectionAndMaintainTheStatus(client, quit)
   120   wg.Done()
   121  }()
   122  go func() {
   123   doExpire(client, quit)
   124   wg.Done()
   125  }()
   126 
   127  c := make(chan os.Signal, 1)
   128  signal.Notify(c, syscall.SIGINT, syscall.SIGTERM)
   129  _ = <-c
   130  close(quit)
   131  log.Printf("recv exit signal...")
   132  wg.Wait()
   133  log.Printf("program exit ok")
   134 }

和单一节点一样,我们运行三个服务实例:

$go build main.go
$main 1
2021/02/11 09:49:16 prog-1 subscribe expire event ok
2021/02/11 09:49:22 prog-1 become leader successfully
2021/02/11 09:49:26 prog-1 is the leader
2021/02/11 09:49:31 prog-1 is the leader
2021/02/11 09:49:36 prog-1 is the leader
... ...

$main 2
2021/02/11 09:49:19 prog-2 subscribe expire event ok
2021/02/11 09:49:40 prog-2 try to become leader failed: redsync: failed to acquire lock
2021/02/11 09:49:55 prog-2 try to become leader failed: redsync: failed to acquire lock
... ...

$main 3
2021/02/11 09:49:31 prog-3 subscribe expire event ok
2021/02/11 09:49:52 prog-3 try to become leader failed: redsync: failed to acquire lock
2021/02/11 09:50:07 prog-3 try to become leader failed: redsync: failed to acquire lock
... ...

我们看到基于Redis集群版的分布式锁也生效了!prog-1成功持有锁并成为leader! 接下来我们再来看看对过期key事件的处理!

我们通过下面命令让redis-cli连接到集群中的所有节点并设置每个节点开启key空间的事件通知:

三主:

$redis-cli -c -h localhost -p 30001
localhost:30001> config set notify-keyspace-events KEx
OK

$redis-cli -c -h localhost -p 30002
localhost:30002> config set notify-keyspace-events KEx
OK

$redis-cli -c -h localhost -p 30003
localhost:30003> config set notify-keyspace-events KEx
OK

三从:

$redis-cli -c -h localhost -p 30004
localhost:30004> config set notify-keyspace-events KEx
OK

$redis-cli -c -h localhost -p 30005
localhost:30005> config set notify-keyspace-events KEx
OK

$redis-cli -c -h localhost -p 30006
localhost:30006> config set notify-keyspace-events KEx
OK

在node1节点上,我们set一个有效期为5s的key:key1:

localhost:30001> setex key1 5 value1
-> Redirected to slot [9189] located at 127.0.0.1:30002
OK

等待5s后,我们的leader:prog-1并没有如预期那样受到expire通知! 这是怎么回事呢?追本溯源,我们查看一下redis官方文档关于notifications的说明[12],我们在文档最后一段找到如下描述:

Events in a cluster

Every node of a Redis cluster generates events about its own subset of the keyspace as described above. However, unlike regular Pub/Sub communication in a cluster, events' notifications are not broadcasted to all nodes. Put differently, keyspace events are node-specific. This means that to receive all keyspace events of a cluster, clients need to subscribe to each of the nodes.

这段话大致意思是Redis集群中的每个redis node都有自己的keyspace,事件通知不会被广播到集群内的所有节点,即keyspace的事件是node相关的。如果要接收一个集群中的所有keyspace的event,那客户端就需要Subcribe集群内的所有节点。我们来改一下代码,形成v2版(考虑到篇幅就不列出所有代码了,仅列出相对于v1版变化的代码):

// github.com/bigwhite/experiments/blob/master/redis-cluster-distributed-lock/cluster/v2/main.go

... ...
    19 const (
    20  redisKeyExpiredEventSubj = `__keyevent@0__:expired`
    21  redisClusterMasters      = "localhost:30001,localhost:30002,localhost:30003,localhost:30004,localhost:30005,localhost:30006"
    22 )
... ...
    83 func doExpire(quit <-chan struct{}) {
    84  var ch = make(chan *goredislib.Message)
    85  nodes := strings.Split(redisClusterMasters, ",")
    86 
    87  for _, node := range nodes {
    88   node := node
    89   go func(quit <-chan struct{}) {
    90    c := goredislib.NewClient(&goredislib.Options{
    91     Addr: node})
    92    defer c.Close()
    93 
    94    // subscribe the expire event of redis
    95    ctx := context.Background()
    96    pubsub := c.Subscribe(ctx, redisKeyExpiredEventSubj)
    97    _, err := pubsub.Receive(ctx)
    98    if err != nil {
    99     log.Printf("prog-%s subscribe expire event of node[%s] failed: %s\n",
   100      id, node, err)
   101     return
   102    }
   103    log.Printf("prog-%s subscribe expire event of node[%s] ok\n", id, node)
   104 
   105    // Go channel which receives messages from redis db
   106    pch := pubsub.Channel()
   107 
   108    for {
   109     select {
   110     case event := <-pch:
   111      ch <- event
   112     case <-quit:
   113      return
   114     }
   115    }
   116   }(quit)
   117  }
   118  for {
   119   select {
   120   case event := <-ch:
   121    key := event.Payload
   122    if atomic.LoadInt64(&isLeader) == 0 {
   123     break
   124    }
   125    log.Printf("prog-%s 收到并处理一条过期消息[key:%s]", id, key)
   126   case <-quit:
   127    return
   128   }
   129  }
   130 }
   131 
   132 func main() {
   133  var wg sync.WaitGroup
   134  wg.Add(2)
   135  var quit = make(chan struct{})
   136  client := goredislib.NewClusterClient(&goredislib.ClusterOptions{
   137   Addrs: strings.Split(redisClusterMasters, ",")})
   138  defer client.Close()
   139 
   140  go func() {
   141   doElectionAndMaintainTheStatus(client, quit)
   142   wg.Done()
   143  }()
   144  go func() {
   145   doExpire(quit)
   146   wg.Done()
   147  }()
   148 
   149  c := make(chan os.Signal, 1)
   150  signal.Notify(c, syscall.SIGINT, syscall.SIGTERM)
   151  _ = <-c
   152  close(quit)
   153  log.Printf("recv exit signal...")
   154  wg.Wait()
   155  log.Printf("program exit ok")
   156 }

在这个新版代码中,我们在每个新goroutine中实现对redis一个节点的Subscribe,并将收到的Event notifications通过“扇入”模式(更多关于并发扇入模式的内容,可以参考我的Go技术专栏文章《Go并发模型和常见并发模式》[13])统一写入到运行doExpire的goroutine中做统一处理。

我们再来运行一下这个示例,并在不同时机创建多个key来验证通知接收和处理的效果:

$main 1
2021/02/11 10:29:21 prog-1 subscribe expire event of node[localhost:30004] ok
2021/02/11 10:29:21 prog-1 subscribe expire event of node[localhost:30001] ok
2021/02/11 10:29:21 prog-1 subscribe expire event of node[localhost:30006] ok
2021/02/11 10:29:21 prog-1 subscribe expire event of node[localhost:30002] ok
2021/02/11 10:29:21 prog-1 subscribe expire event of node[localhost:30003] ok
2021/02/11 10:29:21 prog-1 subscribe expire event of node[localhost:30005] ok
2021/02/11 10:29:26 prog-1 become leader successfully
2021/02/11 10:29:31 prog-1 is the leader
2021/02/11 10:29:36 prog-1 is the leader
2021/02/11 10:29:41 prog-1 is the leader
2021/02/11 10:29:46 prog-1 is the leader
2021/02/11 10:29:47 prog-1 收到并处理一条过期消息[key:key1]
2021/02/11 10:29:51 prog-1 is the leader
2021/02/11 10:29:51 prog-1 收到并处理一条过期消息[key:key2]
2021/02/11 10:29:56 prog-1 收到并处理一条过期消息[key:key3]
2021/02/11 10:29:56 prog-1 is the leader
2021/02/11 10:30:01 prog-1 is the leader
2021/02/11 10:30:06 prog-1 is the leader
^C2021/02/11 10:30:08 recv exit signal...

$main 3
2021/02/11 10:29:27 prog-3 subscribe expire event of node[localhost:30004] ok
2021/02/11 10:29:27 prog-3 subscribe expire event of node[localhost:30006] ok
2021/02/11 10:29:27 prog-3 subscribe expire event of node[localhost:30002] ok
2021/02/11 10:29:27 prog-3 subscribe expire event of node[localhost:30001] ok
2021/02/11 10:29:27 prog-3 subscribe expire event of node[localhost:30005] ok
2021/02/11 10:29:27 prog-3 subscribe expire event of node[localhost:30003] ok
2021/02/11 10:29:48 prog-3 try to become leader failed: redsync: failed to acquire lock
2021/02/11 10:30:03 prog-3 try to become leader failed: redsync: failed to acquire lock
2021/02/11 10:30:08 prog-3 become leader successfully
2021/02/11 10:30:08 prog-3 is the leader
2021/02/11 10:30:12 prog-3 is the leader
2021/02/11 10:30:17 prog-3 is the leader
2021/02/11 10:30:22 prog-3 is the leader
2021/02/11 10:30:23 prog-3 收到并处理一条过期消息[key:key4]
2021/02/11 10:30:27 prog-3 is the leader
^C2021/02/11 10:30:28 recv exit signal...

$main 2
2021/02/11 10:29:24 prog-2 subscribe expire event of node[localhost:30005] ok
2021/02/11 10:29:24 prog-2 subscribe expire event of node[localhost:30006] ok
2021/02/11 10:29:24 prog-2 subscribe expire event of node[localhost:30003] ok
2021/02/11 10:29:24 prog-2 subscribe expire event of node[localhost:30004] ok
2021/02/11 10:29:24 prog-2 subscribe expire event of node[localhost:30002] ok
2021/02/11 10:29:24 prog-2 subscribe expire event of node[localhost:30001] ok
2021/02/11 10:29:45 prog-2 try to become leader failed: redsync: failed to acquire lock
2021/02/11 10:30:01 prog-2 try to become leader failed: redsync: failed to acquire lock
2021/02/11 10:30:16 prog-2 try to become leader failed: redsync: failed to acquire lock
2021/02/11 10:30:28 prog-2 become leader successfully
2021/02/11 10:30:28 prog-2 is the leader
2021/02/11 10:30:29 prog-2 is the leader
2021/02/11 10:30:34 prog-2 is the leader
2021/02/11 10:30:39 prog-2 收到并处理一条过期消息[key:key5]
2021/02/11 10:30:39 prog-2 is the leader
^C2021/02/11 10:30:41 recv exit signal...

这个运行结果如预期!

不过这个方案显然也不是那么理想,毕竟我们要单独Subscribe每个集群内的redis节点,目前没有理想方案,除非redis cluster支持带广播的Event notification。

以上示例代码可以在这里[14] https://github.com/bigwhite/experiments/tree/master/redis-cluster-distributed-lock 下载 。


“Gopher部落”知识星球开球了!高品质首发Go技术文章,“三天”首发阅读权,每年两期Go语言发展现状分析,每天提前1小时阅读到新鲜的Gopher日报,网课、技术专栏、图书内容前瞻,六小时内必答保证等满足你关于Go语言生态的所有需求!星球首开,福利自然是少不了的!2020年年底之前,8.8折(很吉利吧^_^)加入星球,下方图片扫起来吧!

Go技术专栏“改善Go语⾔编程质量的50个有效实践[15]”正在慕课网火热热销中!本专栏主要满足广大gopher关于Go语言进阶的需求,围绕如何写出地道且高质量Go代码给出50条有效实践建议,上线后收到一致好评!欢迎大家订阅!

我的网课“Kubernetes实战:高可用集群搭建、配置、运维与应用[16]”在慕课网热卖中,欢迎小伙伴们订阅学习!


我爱发短信[17]:企业级短信平台定制开发专家 https://51smspush.com/。smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展;短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。2020年4月8日,中国三大电信运营商联合发布《5G消息白皮书》,51短信平台也会全新升级到“51商用消息平台”,全面支持5G RCS消息。

著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个链接地址[18]:https://m.do.co/c/bff6eed92687 开启你的DO主机之路。

Gopher Daily(Gopher每日新闻)归档仓库 - https://github.com/bigwhite/gopherdaily

我的联系方式:

  • 微博:https://weibo.com/bigwhite20xx

  • 微信公众号:iamtonybai

  • 博客:tonybai.com

  • github: https://github.com/bigwhite

  • “Gopher部落”知识星球:https://public.zsxq.com/groups/51284458844544

商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。

参考资料

[1] 

raft: https://raft.github.io/

[2] 

paxos: https://www.cs.rutgers.edu/~pxk/417/notes/paxos.html

[3] 

分布式锁的算法: https://redis.io/topics/distlock

[4] 

有关分布式锁算法的介绍页面: https://redis.io/topics/distlock

[5] 

redsync: https://github.com/go-redsync/redsync

[6] 

go-redis: https://github.com/go-redis/redis

[7] 

redigo: https://github.com/gomodule/redigo

[8] 

《Go并发模型和常见并发模式》: https://www.imooc.com/read/87/article/2430

[9] 

《小心被kill!不要忽略对系统信号的处理》: https://www.imooc.com/read/87/article/2473

[10] 

redis官方对notifications的说明: https://redis.io/topics/notifications

[11] 

redsync已经支持了redis cluster(基于go-redis): https://github.com/go-redsync/redsync/blob/master/redis/goredis/v8/goredis.go

[12] 

redis官方文档关于notifications的说明: https://redis.io/topics/notifications

[13] 

《Go并发模型和常见并发模式》: https://www.imooc.com/read/87/article/2430

[14] 

这里: https://github.com/bigwhite/experiments/tree/master/redis-cluster-distributed-lock

[15] 

改善Go语⾔编程质量的50个有效实践: https://www.imooc.com/read/87

[16] 

Kubernetes实战:高可用集群搭建、配置、运维与应用: https://coding.imooc.com/class/284.html

[17] 

我爱发短信: https://51smspush.com/

[18] 

链接地址: https://m.do.co/c/bff6eed92687

猜你喜欢

转载自blog.csdn.net/bigwhite20xx/article/details/113805005