缓存相关内容

一、缓存简介

缓存是指可以进行高速数据交换的存储器,它先于内存CPU交换数据,因此速率很快。

缓存只是内存中少部分数据的复制品,所以CPU到缓存中寻找数据时,也会出现找不到的情况(因为这些数据没有从内存复制到缓存中去),这时CPU还是会到内存中去找数据,这样系统的速率就慢下来了,不过CPU会把这些数据复制到缓存中去,以便下一次不要再到内存中去取。随着时间的变化,被访问得最频繁的数据不是一成不变的,也就是说,刚才还不频繁的数据,此时已经需要被频繁的访问,刚才还是最频繁的数据,又不频繁了,所以说缓存中的数据要经常按照一定的算法来更换,这样才能保证缓存中的数据是被访问最频繁的。

二、工作原理

缓存的工作原理是当CPU要读取一个数据时,首先从CPU缓存中查找,找到就立即读取并送给CPU处理;没有找到,就从速率相对较慢的内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。正是这样的读取机制使CPU读取缓存的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在CPU缓存中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先缓存后内存

 

三、缓存替换算法

缓存算法是指令的一个明细表,用于决定缓存系统中哪些数据应该被删去。

常见类型包括LFU、LRU、ARC、FIFO、MRU。

最不经常使用算法(LFU):

这个缓存算法使用一个计数器来记录条目被访问的频率。通过使用LFU缓存算法,最低访问数的条目首先被移除。这个方法并不经常使用,因为它无法对一个拥有最初高访问率之后长时间没有被访问的条目缓存负责。

最近最少使用算法(LRU):

这个缓存算法将最近使用的条目存放到靠近缓存顶部的位置。当一个新条目被访问时,LRU将它放置到缓存的顶部。当缓存达到极限时,较早之前访问的条目将从缓存底部开始被移除。这里会使用到昂贵的算法,而且它需要记录“年龄位”来精确显示条目是何时被访问的。此外,当一个LRU缓存算法删除某个条目后,“年龄位”将随其他条目发生改变。

自适应缓存替换算法(ARC):

在IBM Almaden研究中心开发,这个缓存算法同时跟踪记录LFU和LRU,以及驱逐缓存条目,来获得可用缓存的最佳使用。

先进先出算法(FIFO):

FIFO是英文First In First Out 的缩写,是一种先进先出的数据缓存器,他与普通存储器的区别是没有外部读写地址线,这样使用起来非常简单,但缺点就是只能顺序写入数据,顺序的读出数据,其数据地址由内部读写指针自动加1完成,不能像普通存储器那样可以由地址线决定读取或写入某个指定的地址。

最近最常使用算法(MRU):

这个缓存算法最先移除最近最常使用的条目。一个MRU算法擅长处理一个条目越久,越容易被访问的情况。

面试有时候让你手撕LRU算法,下面是之前看到的算法实现,可供参考

双链表 + hashtable实现原理:

将Cache的所有位置都用双连表连接起来,当一个位置被命中之后,就将通过调整链表的指向,将该位置调整到链表头的位置,新加入的Cache直接加到链表头中。这样,在多次进行Cache操作后,最近被命中的,就会被向链表头方向移动,而没有命中的,而想链表后面移动,链表尾则表示最近最少使用的Cache。当需要替换内容时候,链表的最后位置就是最少被命中的位置,我们只需要淘汰链表最后的部分即可。

原文链接:https://blog.csdn.net/beiyeqingteng/article/details/7010411

public class LRUCache {
	
	private int cacheSize;
	private Hashtable<Object, Entry> nodes;//缓存容器
	private int currentSize;
	private Entry first;//链表头
	private Entry last;//链表尾
	
	public LRUCache(int i) {
		currentSize = 0;
		cacheSize = i;
		nodes = new Hashtable<Object, Entry>(i);//缓存容器
	}
	
	/**
	 * 获取缓存中对象,并把它放在最前面
	 */
	public Entry get(Object key) {
		Entry node = nodes.get(key);
		if (node != null) {
			moveToHead(node);
			return node;
		} else {
			return null;
		}
	}
	
	/**
	 * 添加 entry到hashtable, 并把entry 
	 */
	public void put(Object key, Object value) {
		//先查看hashtable是否存在该entry, 如果存在,则只更新其value
		Entry node = nodes.get(key);
		
		if (node == null) {
			//缓存容器是否已经超过大小.
			if (currentSize >= cacheSize) {
				nodes.remove(last.key);
				removeLast();
			} else {
				currentSize++;
			}			
			node = new Entry();
		}
		node.value = value;
		//将最新使用的节点放到链表头,表示最新使用的.
		moveToHead(node);
		nodes.put(key, node);
	}
 
	/**
	 * 将entry删除, 注意:删除操作只有在cache满了才会被执行
	 */
	public void remove(Object key) {
		Entry node = nodes.get(key);
		//在链表中删除
		if (node != null) {
			if (node.prev != null) {
				node.prev.next = node.next;
			}
			if (node.next != null) {
				node.next.prev = node.prev;
			}
			if (last == node)
				last = node.prev;
			if (first == node)
				first = node.next;
		}
		//在hashtable中删除
		nodes.remove(key);
	}
 
	/**
	 * 删除链表尾部节点,即使用最后 使用的entry
	 */
	private void removeLast() {
		//链表尾不为空,则将链表尾指向null. 删除连表尾(删除最少使用的缓存对象)
		if (last != null) {
			if (last.prev != null)
				last.prev.next = null;
			else
				first = null;
			last = last.prev;
		}
	}
	
	/**
	 * 移动到链表头,表示这个节点是最新使用过的
	 */
	private void moveToHead(Entry node) {
		if (node == first)
			return;
		if (node.prev != null)
			node.prev.next = node.next;
		if (node.next != null)
			node.next.prev = node.prev;
		if (last == node)
			last = node.prev;
		if (first != null) {
			node.next = first;
			first.prev = node;
		}
		first = node;
		node.prev = null;
		if (last == null)
			last = first;
	}
	/*
	 * 清空缓存
	 */
	public void clear() {
		first = null;
		last = null;
		currentSize = 0;
	}
 
}
 
class Entry {
	Entry prev;//前一节点
	Entry next;//后一节点
	Object value;//值
	Object key;//键
}

猜你喜欢

转载自blog.csdn.net/orzMrXu/article/details/102530625
今日推荐