笔记_Java基础总结

Java基本功

1.JAVA基础概念与常识

1.1 编译型语言和解释型语言

计算机是不能理解高级语言的,更不能直接执行高级语言,它只能直接理解机器语言,所以使用任何高级语言编写的程序若想被计算机运行,都必须将其转换成计算机语言,也就是机器码。而这种转换的方式有两种:1.编译;2.解释

由此高级语言也分为编译型语言和解释型语言。

主要区别在于,前者源程序编译后即可在该平台运行,后者是在运行期间才编译。所以前者运行速度快,后者跨平台性好。

1.2 什么是字节码?采用字节码的好处是什么?

在 Java 中,JVM 可以理解的代码就叫做字节码(即扩展名为 .class 的文件),它不面向任何特定的处理器,只面向虚拟机。Java 语言通过字节码的方式,在一定程度上解决了传统解释型语言执行效率低的问题,同时又保留了解释型语言可移植的特点。所以 Java 程序运行时比较高效,而且,由于字节码并不针对一种特定的机器,因此,Java 程序无须重新编译便可在多种不同操作系统的计算机上运行。

1.3 JDK 和 JRE

JDK 是 Java Development Kit 缩写,它是功能齐全的 Java SDK。它拥有 JRE 所拥有的一切,还有编译器(javac)和工具(如 javadoc 和 jdb)。它能够创建和编译程序。

JRE 是 Java 运行时环境。它是运行已编译 Java 程序所需的所有内容的集合,包括 Java 虚拟机(JVM),Java 类库,java 命令和其他的一些基础构件。但是,它不能用于创建新程序。

如果你只是为了运行一下 Java 程序的话,那么你只需要安装 JRE 就可以了。如果你需要进行一些 Java 编程方面的工作,那么你就需要安装 JDK 了。但是,这不是绝对的。有时,即使您不打算在计算机上进行任何 Java 开发,仍然需要安装 JDK。例如,如果要使用 JSP 部署 Web 应用程序,那么从技术上讲,您只是在应用程序服务器中运行 Java 程序。那你为什么需要 JDK 呢?因为应用程序服务器会将 JSP 转换为 Java servlet,并且需要使用 JDK 来编译 servlet。

1.4 Java 和 C++的区别?

  • 都是面向对象的语言,都支持封装、继承和多态
  • Java 不提供指针来直接访问内存,程序内存更加安全
  • Java 的类是单继承的,C++ 支持多重继承;虽然 Java 的类不可以多继承,但是接口可以多继承。
  • Java 有自动内存管理垃圾回收机制(GC),不需要程序员手动释放无用内存

1.5 什么是 Java 程序的主类 应用程序和小程序的主类有何不同?

一个程序中可以有多个类,但只能有一个类是主类。在 Java 应用程序中,这个主类是指包含 main() 方法的类。而在 Java 小程序中,这个主类是一个继承自系统类 JApplet 或 Applet 的子类。应用程序的主类不一定要求是 public 类,但小程序的主类要求必须是 public 类。主类是 Java 程序执行的入口点。

1.6 import java 和 javax 有什么区别?

刚开始的时候 JavaAPI 所必需的包是 java 开头的包,javax 当时只是扩展 API 包来使用。然而随着时间的推移,javax 逐渐地扩展成为 Java API 的组成部分。但是,将扩展从 javax 包移动到 java 包确实太麻烦了,最终会破坏一堆现有的代码。因此,最终决定 javax 包将成为标准 API 的一部分。

所以,实际上 java 和 javax 没有区别。这都是一个名字。

1.7 为什么说 Java 语言“编译与解释并存”?

高级编程语言按照程序的执行方式分为编译型和解释型两种。简单来说,编译型语言是指编译器针对特定的操作系统将源代码一次性翻译成可被该平台执行的机器码;解释型语言是指解释器对源程序逐行解释成特定平台的机器码并立即执行。比如,你想阅读一本英文名著,你可以找一个英文翻译人员帮助你阅读, 有两种选择方式,你可以先等翻译人员将全本的英文名著(也就是源码)都翻译成汉语,再去阅读,也可以让翻译人员翻译一段,你在旁边阅读一段,慢慢把书读完。

Java 语言既具有编译型语言的特征,也具有解释型语言的特征,因为 Java 程序要经过先编译,后解释两个步骤,由 Java 编写的程序需要先经过编译步骤,生成字节码(*.class 文件),这种字节码必须由 Java 解释器来解释执行。因此,我们可以认为 Java 语言编译与解释并存。

2.Java语法

2.1 字符型常量和字符串常量的区别?

  1. 形式上: 字符常量是单引号引起的一个字符; 字符串常量是双引号引起的 0 个或若干个字符

  2. 含义上: 字符常量相当于一个整型值( ASCII 值),可以参加表达式运算; 字符串常量代表一个地址值(该字符串在内存中存放位置)

  3. 占内存大小 字符常量只占 2 个字节; 字符串常量占若干个字节 (注意: char 在 Java 中占两个字节)

2.2 continue、break、和 return 的区别是什么?

在循环结构中,当循环条件不满足或者循环次数达到要求时,循环会正常结束。但是,有时候可能需要在循环的过程中,当发生了某种条件之后 ,提前终止循环,这就需要用到下面几个关键词:

  1. continue :指跳出当前的这一次循环,继续下一次循环。
  2. break :指跳出整个循环体,继续执行循环下面的语句。

return 用于跳出所在方法,结束该方法的运行。return 一般有两种用法:

  1. return; :直接使用 return 结束方法执行,用于没有返回值函数的方法
  2. return value; :return 一个特定值,用于有返回值函数的方法

2.3 Java 泛型了解么?什么是类型擦除?介绍一下常用的通配符?

Java 泛型(generics)是 JDK 5 中引入的一个新特性, 泛型提供了编译时类型安全检测机制,该机制允许程序员在编译时检测到非法的类型。泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数。

Java 的泛型是伪泛型,这是因为 Java 在编译期间,所有的泛型信息都会被擦掉,这也就是通常所说类型擦除 。

List<Integer> list = new ArrayList<>();

list.add(12);
//这里直接添加会报错
list.add("a");
Class<? extends List> clazz = list.getClass();
Method add = clazz.getDeclaredMethod("add", Object.class);
//但是通过反射添加,是可以的
add.invoke(list, "kl");

System.out.println(list)

泛型一般有三种使用方式:泛型类、泛型接口、泛型方法。

1.泛型类:

//此处T可以随便写为任意标识,常见的如T、E、K、V等形式的参数常用于表示泛型
//在实例化泛型类时,必须指定T的具体类型
public class Generic<T>{
    
    

    private T key;

    public Generic(T key) {
    
    
        this.key = key;
    }

    public T getKey(){
    
    
        return key;
    }
}

如何实例化泛型类:

Generic<Integer> genericInteger = new Generic<Integer>(123456);

2.泛型接口 :

public interface Generator<T> {
    
    
    public T method();
}

实现泛型接口,不指定类型:

class GeneratorImpl<T> implements Generator<T>{
    
    
    @Override
    public T method() {
    
    
        return null;
    }
}

实现泛型接口,指定类型:

class GeneratorImpl<T> implements Generator<String>{
    
    
    @Override
    public String method() {
    
    
        return "hello";
    }
}

3.泛型方法 :

   public static < E > void printArray( E[] inputArray ){
    
    
         for ( E element : inputArray ){
    
    
            System.out.printf( "%s ", element );
         }
         System.out.println();
    }

使用:

// 创建不同类型数组: Integer, Double 和 Character
Integer[] intArray = {
    
     1, 2, 3 };
String[] stringArray = {
    
     "Hello", "World" };
printArray( intArray  );
printArray( stringArray  );

常用的通配符为: T,E,K,V,?

  • ? 表示不确定的 java 类型
  • T (type) 表示具体的一个 java 类型
  • K V (key value) 分别代表 java 键值中的 Key Value
  • E (element) 代表 Element

2.4 == 和 equals 的区别

== : 它的作用是判断两个对象的地址是不是相等。即判断两个对象是不是同一个对象。(基本数据类型 == 比较的是值,引用数据类型 == 比较的是内存地址)

因为 Java 只有值传递,所以,对于 == 来说,不管是比较基本数据类型,还是引用数据类型的变量,其本质比较的都是值,只是引用类型变量存的值是对象的地址。

equals() : 它的作用也是判断两个对象是否相等,它不能用于比较基本数据类型的变量。equals()方法存在于Object类中,而Object类是所有类的直接或间接父类。

Objectequals()方法:

public boolean equals(Object obj) {
    
    
     return (this == obj);
}

equals() 方法存在两种使用情况:

  • 情况 1:类没有覆盖 equals()方法。则通过equals()比较该类的两个对象时,等价于通过“==”比较这两个对象。使用的默认是 Objectequals()方法。
  • 情况 2:类覆盖了 equals() 方法。一般,我们都覆盖 equals() 方法来两个对象的内容相等;若它们的内容相等,则返回 true(即,认为这两个对象相等)。

举个例子:

public class test1 {
    
    
    public static void main(String[] args) {
    
    
        String a = new String("ab"); // a 为一个引用
        String b = new String("ab"); // b为另一个引用,对象的内容一样
        String aa = "ab"; // 放在常量池中
        String bb = "ab"; // 从常量池中查找
        if (aa == bb) // true
            System.out.println("aa==bb");
        if (a == b) // false,非同一对象
            System.out.println("a==b");
        if (a.equals(b)) // true
            System.out.println("aEQb");
        if (42 == 42.0) {
    
     // true
            System.out.println("true");
        }
    }
}

说明:

  • String 中的 equals 方法是被重写过的,因为 Object 的 equals 方法是比较的对象的内存地址,而 String 的 equals 方法比较的是对象的值。
  • 当创建 String 类型的对象时,虚拟机会在常量池中查找有没有已经存在的值和要创建的值相同的对象,如果有就把它赋给当前引用。如果没有就在常量池中重新创建一个 String 对象。

Stringequals()方法:

public boolean equals(Object anObject) {
    
    
    if (this == anObject) {
    
    
        return true;
    }
    if (anObject instanceof String) {
    
    
        String anotherString = (String)anObject;
        int n = value.length;
        if (n == anotherString.value.length) {
    
    
            char v1[] = value;
            char v2[] = anotherString.value;
            int i = 0;
            while (n-- != 0) {
    
    
                if (v1[i] != v2[i])
                    return false;
                i++;
            }
            return true;
        }
    }
    return false;
}

2.5 hashCode()与 equals()

面试官可能会问你:“你重写过 hashcodeequals么,为什么重写 equals 时必须重写 hashCode 方法?”

1)hashCode()介绍:

hashCode() 的作用是获取哈希码,也称为散列码;它实际上是返回一个 int 整数。这个哈希码的作用是确定该对象在哈希表中的索引位置。hashCode()定义在 JDK 的 Object 类中,这就意味着 Java 中的任何类都包含有 hashCode() 函数。另外需要注意的是:Objecthashcode 方法是本地方法,也就是用 c 语言或 c++ 实现的,该方法通常用来将对象的 内存地址 转换为整数之后返回。

public native int hashCode();

散列表存储的是键值对(key-value),它的特点是:能根据“键”快速的检索出对应的“值”。这其中就利用到了散列码!(可以快速找到所需要的对象)

2)为什么要有 hashCode?

我们以 HashSet 如何检查重复”为例子来说明为什么要有 hashCode?

当你把对象加入 HashSet 时,HashSet 会先计算对象的 hashcode 值来判断对象加入的位置,同时也会与其他已经加入的对象的hashcode 值作比较,如果没有相符的 hashcodeHashSet会假设对象没有重复出现。但是如果发现有相同 hashcode 值的对象,这时会调用equals() 方法来检查hashcode 相等的对象是否真的相同。如果两者相同,HashSet 就不会让其加入操作成功。如果不同的话,就会重新散列到其他位置。(摘自我的 Java 启蒙书《Head First Java》第二版)。这样我们就大大减少了 equals 的次数,相应就大大提高了执行速度。

3)为什么重写 equals 时必须重写 hashCode 方法?

如果两个对象相等,则hashcode 一定也是相同的。两个对象相等,对两个对象分别调用 equals 方法都返回 true。但是,两个对象有相同的hashcode 值,它们也不一定是相等的 。因此,equals方法被覆盖过,则 hashCode 方法也必须被覆盖。

hashCode()的默认行为是对堆上的对象产生独特值。如果没有重写 hashCode(),则该 class 的两个对象无论如何都不会相等(即使这两个对象指向相同的数据)

4)为什么两个对象有相同的 hashcode 值,它们也不一定是相等的?

以下内容摘自《Head Fisrt Java》。

因为 hashCode() 所使用的杂凑算法也许刚好会让多个对象传回相同的杂凑值。越糟糕的杂凑算法越容易碰撞,但这也与数据值域分布的特性有关(所谓碰撞也就是指的是不同的对象得到相同的hashCode

我们刚刚也提到了HashSet,如果HashSet 在对比的时候,同样的 hashcode 有多个对象,它会使用 equals() 来判断是否真的相同。也就是说 hashcode 只是用来缩小查找成本。

3.基本数据类型

3.1装箱和拆箱

有了基本类型之后为什么还要有包装器类型呢?

核心:让基本类型具备对象的特征,实现更多的功能.

Java是一个面相对象的编程语言,基本类型并不具有对象的性质,为了让基本类型也具有对象的特征,就出现了包装类型(如我们在使用集合类型Collection时就一定要使用包装类型而非基本类型),它相当于将基本类型“包装起来”,使得它具有了对象的性质,并且为其添加了属性和方法,丰富了基本类型的操作。

另外,有些数据结构库类只能操作对象,而不支持基本数据类型的变量,包装类提供一种便利的方式,能够把基本数据类型转换成等价的对象,从而可以利用数据结构库类进行处理。

1)什么是装箱?什么是拆箱?

Java为每种基本数据类型都提供了对应的包装器类型,如果要生成一个数值为10的Integer对象,必须这样进行:Integer i = new Integer(10);

而在从Java SE5开始就提供了自动装箱的特性,如果要生成一个数值为10的Integer对象,只需要这样就可以了:Integer i = 10;

这个过程中会自动根据数值创建对应的 Integer对象,这就是装箱。
那什么是拆箱呢?顾名思义,跟装箱对应,就是自动将包装器类型转换为基本数据类型:

Integer i = 10;  //装箱
int n = i;   //拆箱

简单一点说,装箱就是 自动将基本数据类型转换为包装器类型;拆箱就是 自动将包装器类型转换为基本数据类型。

下表是基本数据类型对应的包装器类型:

基本类型 包装类型
int(4字节) Integer
byte(1字节) Byte
short(2字节) Short
long(8字节) Long
float(4字节) Float
double(8字节) Double
char(2字节) Character
boolean(未定) Boolean

2)装箱和拆箱是如何实现的

在装箱的时候自动调用的是Integer的valueOf(int)方法。而在拆箱的时候自动调用的是Integer的intValue方法。
其他的也类似,比如Double、Character。

源码:

valueOf


    /**
     * Returns an {@code Integer} instance representing the specified
     * {@code int} value.  If a new {@code Integer} instance is not
     * required, this method should generally be used in preference to
     * the constructor {@link #Integer(int)}, as this method is likely
     * to yield significantly better space and time performance by
     * caching frequently requested values.
     *
     * This method will always cache values in the range -128 to 127,
     * inclusive, and may cache other values outside of this range.
     *
     * @param  i an {@code int} value.
     * @return an {@code Integer} instance representing {@code i}.
     * @since  1.5
     */
    public static Integer valueOf(int i) {
    
    
        assert IntegerCache.high >= 127;
        if (i >= IntegerCache.low && i <= IntegerCache.high)
            return IntegerCache.cache[i + (-IntegerCache.low)];
        return new Integer(i);
    }

// IntegerCache
private static class IntegerCache {
    
    
        static final int high;
        static final Integer cache[];

        static {
    
    
            final int low = -128;

            // high value may be configured by property
            int h = 127;
            if (integerCacheHighPropValue != null) {
    
    
                // Use Long.decode here to avoid invoking methods that
                // require Integer's autoboxing cache to be initialized
                int i = Long.decode(integerCacheHighPropValue).intValue();
                i = Math.max(i, 127);
                // Maximum array size is Integer.MAX_VALUE
                h = Math.min(i, Integer.MAX_VALUE - -low);
            }
            high = h;

            cache = new Integer[(high - low) + 1];
            int j = low;
            for(int k = 0; k < cache.length; k++)
                cache[k] = new Integer(j++);
        }

        private IntegerCache() {
    
    }
    }




equals

/**
     * Compares this object to the specified object.  The result is
     * {@code true} if and only if the argument is not
     * {@code null} and is an {@code Integer} object that
     * contains the same {@code int} value as this object.
     *
     * @param   obj   the object to compare with.
     * @return  {@code true} if the objects are the same;
     *          {@code false} otherwise.
     */
    public boolean equals(Object obj) {
    
    
        if (obj instanceof Integer) {
    
    
            return value == ((Integer)obj).intValue();
        }
        return false;
    }

因此可以用一句话总结装箱和拆箱的实现过程:

装箱过程是通过调用包装器的valueOf方法实现的,而拆箱过程是通过调用包装器的 xxxValue方法实现的。(xxx代表对应的基本数据类型)。

3.2 面试中的相关问题

1.下面这段代码的输出结果是什么?

public class Main {
    
    
    public static void main(String[] args) {
    
    
         
        Integer i1 = 100;
        Integer i2 = 100;
        Integer i3 = 200;
        Integer i4 = 200;
         
        System.out.println(i1==i2);  //true
        System.out.println(i3==i4);  //false
    }
}

/** 输出结果表明i1和i2指向的是同一个对象,而i3和i4指向的是不同的对象。
 * 在通过valueOf方法创建Integer对象的时候,如果数值在[-128,127]之间,便返回指向IntegerCache.cache中已经存在的对象的引用;否则创建一个新的Integer对象。
 * 上面的代码中i1和i2的数值为100,因此会直接从cache中取已经存在的对象,所以i1和i2指向的是同一个对象,而i3和i4则是分别指向不同的对象。
 **/
 

2.下面这段代码的输出结果是什么?

public class Main {
    
    
    public static void main(String[] args) {
    
    
         
        Double i1 = 100.0;
        Double i2 = 100.0;
        Double i3 = 200.0;
        Double i4 = 200.0;
         
        System.out.println(i1==i2); // false
        System.out.println(i3==i4); // false
    }
}

/**
 * Double类的valueOf方法会采用与Integer类的valueOf方法不同的实现。很简单:在某个范围内的整型数值的个数是有限的,而浮点数却不是。
 * 注意,Integer、Short、Byte、Character、Long这几个类的valueOf方法的实现是类似的。
 * Double、Float的valueOf方法的实现是类似的。
 **/

3.下面这段代码输出结果是什么:

public class Main {
    
    
    public static void main(String[] args) {
    
    
         
        Boolean i1 = false;
        Boolean i2 = false;
        Boolean i3 = true;
        Boolean i4 = true;
         
        System.out.println(i1==i2); // true
        System.out.println(i3==i4); // true
    }
}

下面是Boolean的valueOf方法的具体实现:

public static Boolean valueOf(boolean b) {
    
    
        return (b ? TRUE : FALSE);
    }

而其中的 TRUE 和FALSE又是什么呢?在Boolean中定义了2个静态成员属性:

public static final Boolean TRUE = new Boolean(true);

    /** 
     * The <code>Boolean</code> object corresponding to the primitive 
     * value <code>false</code>. 
     */
    public static final Boolean FALSE = new Boolean(false);

4.谈谈Integer i = new Integer(xxx)和Integer i =xxx;这两种方式的区别。

当然,这个题目属于比较宽泛类型的。但是要点一定要答上,主要有以下这两点区别:

1)第一种方式不会触发自动装箱的过程;而第二种方式会触发;

2)在执行效率和资源占用上的区别。第二种方式的执行效率和资源占用在一般性情况下要优于第一种情况(注意这并不是绝对的)。

public class Main {
    
    
    public static void main(String[] args) {
    
    
         
        Integer a = 1;
        Integer b = 2;
        Integer c = 3;
        Integer d = 3;
        Integer e = 321;
        Integer f = 321;
        Long g = 3L;
        Long h = 2L;
         
        System.out.println(c==d);  // true
        System.out.println(e==f); //false
        System.out.println(c==(a+b));  //true
        System.out.println(c.equals(a+b));  //true
        System.out.println(g==(a+b));  //true
        System.out.println(g.equals(a+b));  //false
        System.out.println(g.equals(a+h));  //true
    }
}

/**
 * 第一个和第二个输出结果没有什么疑问。
 * 第三句由于  a+b包含了算术运算,因此会触发自动拆箱过程(会调用intValue方法),因此它们比较的是数值是否相等。
 * 而对于c.equals(a+b)会先触发自动拆箱过程,再触发自动装箱过程,也就是说a+b,会先各自调用intValue方法,得到了加法运算后的数值之后,便调用Integer.valueOf方法,再进行equals比较。
 * 同理对于后面的也是这样,不过要注意倒数第二个和最后一个输出的结果
 * (如果数值是int类型的,装箱过程调用的是Integer.valueOf;如果是long类型的,装箱调用的Long.valueOf方法)。
 * 
 **/

4.方法(函数)

4.1 为什么Java中只有值传递?

首先回顾一下在程序设计语言中有关将参数传递给方法(或函数)的一些专业术语。

按值调用(call by value)表示方法接收的是调用者提供的值,而按引用调用(call by reference)表示方法接收的是调用者提供的变量地址。一个方法可以修改传递引用所对应的变量值,而不能修改传递值调用所对应的变量值。

它用来描述各种程序设计语言(不只是 Java)中方法参数传递方式。

Java 程序设计语言总是采用按值调用。也就是说,方法得到的是所有参数值的一个拷贝,也就是说,方法不能修改传递给它的任何参数变量的内容。

下面通过 3 个例子说明

example 1

public static void main(String[] args) {
    
    
    int num1 = 10;
    int num2 = 20;

    swap(num1, num2);

    System.out.println("num1 = " + num1);
    System.out.println("num2 = " + num2);
}

public static void swap(int a, int b) {
    
    
    int temp = a;
    a = b;
    b = temp;

    System.out.println("a = " + a);
    System.out.println("b = " + b);
}

结果

a = 20
b = 10
num1 = 10
num2 = 20

解析
在这里插入图片描述
在 swap 方法中,a、b 的值进行交换,并不会影响到 num1、num2。因为,a、b 中的值,只是从 num1、num2 的复制过来的。也就是说,a、b 相当于 num1、num2 的副本,副本的内容无论怎么修改,都不会影响到原件本身。

通过上面例子,我们已经知道了一个方法不能修改一个基本数据类型的参数,而对象引用作为参数就不一样,请看 example2.

example 2

    public static void main(String[] args) {
    
    
        int[] arr = {
    
     1, 2, 3, 4, 5 };
        System.out.println(arr[0]);
        change(arr);
        System.out.println(arr[0]);
    }

    public static void change(int[] array) {
    
    
        // 将数组的第一个元素变为0
        array[0] = 0;
    }

结果

1
0

解析

array 被初始化 arr 的拷贝也就是一个对象的引用,也就是说 array 和 arr 指向的是同一个数组对象。 因此,外部对引用对象的改变会反映到所对应的对象上。

通过 example2 我们已经看到,实现一个改变对象参数状态的方法并不是一件难事。理由很简单,方法得到的是对象引用的拷贝,对象引用及其他的拷贝同时引用同一个对象。

example 3

public class Test {
    
    

    public static void main(String[] args) {
    
    
        // TODO Auto-generated method stub
        Student s1 = new Student("小张");
        Student s2 = new Student("小李");
        Test.swap(s1, s2);
        System.out.println("s1:" + s1.getName());
        System.out.println("s2:" + s2.getName());
    }

    public static void swap(Student x, Student y) {
    
    
        Student temp = x;
        x = y;
        y = temp;
        System.out.println("x:" + x.getName());
        System.out.println("y:" + y.getName());
    }
}

结果

x:小李
y:小张
s1:小张
s2:小李

解析

交换之前:

在这里插入图片描述

交换之后:

在这里插入图片描述
通过上面两张图可以很清晰的看出: 方法并没有改变存储在变量 s1 和 s2 中的对象引用。swap 方法的参数 x 和 y 被初始化为两个对象引用的拷贝,这个方法交换的是这两个拷贝

总结

Java 程序设计语言对对象采用的不是引用调用,实际上,对象引用是按 值传递的。

下面再总结一下 Java 中方法参数的使用情况:

  • 一个方法不能修改一个基本数据类型的参数(即数值型或布尔型)。
  • 一个方法可以改变一个对象参数的状态。
  • 一个方法不能让对象参数引用一个新的对象。

参考:

《Java 核心技术卷 Ⅰ》基础知识第十版第四章 4.5 小节

4.2 重写和重载的区别

重载就是同样的一个方法能够根据输入数据的不同,做出不同的处理

重写就是当子类继承自父类的相同方法,输入数据一样,但要做出有别于父类的响应时,你就要覆盖父类方法

4.3 深拷贝VS浅拷贝

浅拷贝:对基本数据类型进行值传递,对引用数据类型进行引用传递般的拷贝,此为浅拷贝。

深拷贝:对基本数据类型进行值传递,对引用数据类型,创建一个新的对象,并复制其内容,此为深拷贝。

4.4 return 在无返回值方法的特殊使用

// return在无返回值方法的特殊使用
public void f5(int a) {
    
    
    if (a > 10) {
    
    
        return;//表示结束所在方法 (f5方法)的执行,下方的输出语句不会执行
    }
    System.out.println(a);
}

面向对象

1. 类和对象

1.1 面向对象和面向过程的区别

面向过程面向过程性能比面向对象高。 因为类调用时需要实例化,开销比较大,比较消耗资源,所以当性能是最重要的考量因素的时候,比如单片机、嵌入式开发、Linux/Unix 等一般采用面向过程开发。但是,面向过程没有面向对象易维护、易复用、易扩展。

面向对象面向对象易维护、易复用、易扩展。 因为面向对象有封装、继承、多态性的特性,所以可以设计出低耦合的系统,使系统更加灵活、更加易于维护。但是,面向对象性能比面向过程低。

这个并不是根本原因,面向过程也需要分配内存,计算内存偏移量,Java 性能差的主要原因并不是因为它是面向对象语言,而是 Java 是半编译语言,最终的执行代码并不是可以直接被 CPU 执行的二进制机械码。

而面向过程语言大多都是直接编译成机械码在电脑上执行,并且其它一些面向过程的脚本语言性能也并不一定比 Java 好。

1.2 构造器 Constructor 是否可被 override?

Constructor 不能被 override(重写),但是可以 overload(重载),所以你可以看到一个类中有多个构造函数的情况。

1.3 在 Java 中定义一个不做事且没有参数的构造方法的作用

Java 程序在执行子类的构造方法之前,如果没有用 super()来调用父类特定的构造方法,则会调用父类中“没有参数的构造方法”。因此,如果父类中只定义了有参数的构造方法,而在子类的构造方法中又没有用 super() 来调用父类中特定的构造方法,则编译时将发生错误,因为 Java 程序在父类中找不到没有参数的构造方法可供执行。解决办法是在父类里加上一个不做事且没有参数的构造方法。

1.4 成员变量与局部变量的区别有哪些?

  • 从语法形式上看:成员变量是属于类的,而局部变量是在代码块或方法中定义的变量或是方法的参数;成员变量可以被 public,private,static 等修饰符所修饰,而局部变量不能被访问控制修饰符及 static 所修饰;但是,成员变量和局部变量都能被 final 所修饰。
  • 从变量在内存中的存储方式来看:如果成员变量是使用static修饰的,那么这个成员变量是属于类的,如果没有使用static修饰,这个成员变量是属于实例的。而对象存在于堆内存,局部变量则存在于栈内存。
  • 从变量在内存中的生存时间上看:成员变量是对象的一部分,它随着对象的创建而存在,而局部变量随着方法的调用而自动消失。
  • 成员变量如果没有被赋初值:则会自动以类型的默认值而赋值(一种情况例外:被 final 修饰的成员变量也必须显式地赋值),而局部变量则不会自动赋值。

1.5 创建一个对象用什么运算符?对象实体与对象引用有何不同?

new 运算符,new 创建对象实例(对象实例在堆内存中),对象引用指向对象实例(对象引用存放在栈内存中)。一个对象引用可以指向 0 个或 1 个对象(一根绳子可以不系气球,也可以系一个气球);一个对象可以有 n 个引用指向它(可以用 n 条绳子系住一个气球)。

1.6 一个类的构造方法的作用是什么? 若一个类没有声明构造方法,该程序能正确执行吗? 为什么?

主要作用是完成对类对象的初始化工作。可以执行。因为一个类即使没有声明构造方法也会有默认的不带参数的构造方法。如果我们自己添加了类的构造方法(无论是否有参),Java 就不会再添加默认的无参数的构造方法了,这时候,就不能直接 new 一个对象而不传递参数了,所以我们一直在不知不觉地使用构造方法,这也是为什么我们在创建对象的时候后面要加一个括号(因为要调用无参的构造方法)。如果我们重载了有参的构造方法,记得都要把无参的构造方法也写出来(无论是否用到),因为这可以帮助我们在创建对象的时候少踩坑。

1.7 构造方法有哪些特性?

  • 名字与类名相同。
  • 没有返回值,但不能用 void 声明构造函数。
  • 生成类的对象时自动执行,无需调用。

1.8 在调用子类构造方法之前会先调用父类没有参数的构造方法,其目的是?

帮助子类做初始化工作。

1.9 对象的相等与指向他们的引用相等,两者有什么不同?

对象的相等,比的是内存中存放的内容是否相等。而引用相等,比较的是他们指向的内存地址是否相等。

2. 面向对象三大特征

2.1 封装

封装是指把一个对象的状态信息(也就是属性)隐藏在对象内部,不允许外部对象直接访问对象的内部信息。但是可以提供一些可以被外界访问的方法来操作属性。就好像我们看不到挂在墙上的空调的内部的零件信息(也就是属性),但是可以通过遥控器(方法)来控制空调。如果属性不想被外界访问,我们大可不必提供方法给外界访问。但是如果一个类没有提供给外界访问的方法,那么这个类也没有什么意义了。就好像如果没有空调遥控器,那么我们就无法操控空凋制冷,空调本身就没有意义了(当然现在还有很多其他方法 ,这里只是为了举例子)。

public class Student {
    
    
    private int id;//id属性私有化
    private String name;//name属性私有化

    //获取id的方法
    public int getId() {
    
    
        return id;
    }

    //设置id的方法
    public void setId(int id) {
    
    
        this.id = id;
    }

    //获取name的方法
    public String getName() {
    
    
        return name;
    }

    //设置name的方法
    public void setName(String name) {
    
    
        this.name = name;
    }
}

2.2. 继承

不同类型的对象,相互之间经常有一定数量的共同点。例如,小明同学、小红同学、小李同学,都共享学生的特性(班级、学号等)。同时,每一个对象还定义了额外的特性使得他们与众不同。例如小明的数学比较好,小红的性格惹人喜爱;小李的力气比较大。继承是使用已存在的类的定义作为基础建立新类的技术,新类的定义可以增加新的数据或新的功能,也可以用父类的功能,但不能选择性地继承父类。通过使用继承,可以快速地创建新的类,可以提高代码的重用,程序的可维护性,节省大量创建新类的时间 ,提高我们的开发效率。

关于继承如下 3 点请记住:

  1. 子类拥有父类对象所有的属性和方法(包括私有属性和私有方法),但是父类中的私有属性和方法子类是无法访问,只是拥有。
  2. 子类可以拥有自己属性和方法,即子类可以对父类进行扩展。
  3. 子类可以用自己的方式实现父类的方法。(以后介绍)。

2.3 多态

多态,顾名思义,表示一个对象具有多种的状态。具体表现为父类的引用指向子类的实例。

多态的特点:

  • 对象类型和引用类型之间具有继承(类)/实现(接口)的关系;
  • 引用类型变量发出的方法调用的到底是哪个类中的方法,必须在程序运行期间才能确定;
  • 多态不能调用“只在子类存在但在父类不存在”的方法;
  • 如果子类重写了父类的方法,真正执行的是子类覆盖的方法,如果子类没有覆盖父类的方法,执行的是父类的方法。

3 修饰符

3.1 在一个静态方法内调用一个非静态成员为什么是非法的?

由于静态方法可以不通过对象进行调用,因此在静态方法里,不能调用其他非静态变量,也不可以访问非静态变量成员。

3.2 静态方法和实例方法有何不同

在外部调用静态方法时,可以使用"类名.方法名"的方式,也可以使用"对象名.方法名"的方式。而实例方法只有后面这种方式。也就是说,调用静态方法可以无需创建对象。

静态方法在访问本类的成员时,只允许访问静态成员(即静态成员变量和静态方法),而不允许访问实例成员变量和实例方法;实例方法则无此限制。

//输出结果?

public class Main {
    
    
	private static final char[] value = {
    
    '1','2','3'};
	public static void main(String[] args) {
    
    
		System.out.println(value[0]); \\ 1
		value[0] = '3';
		System.out.println(value[0]); \\3
	}
}

/**
 * 这里的被final修饰的变量指向的是一个数组
 * 被final修饰的不可更改指的是 value变量存储的值也就是字符数组的地址不能再更改
 * 即不能再将一个新的对象赋值给value(value = new char[3],这样编译是会报错的).
 * 但是value指向的数组里头的元素值还是可以修改的
 **/

4 其他重要知识点

4.1 String、StringBuilder、StringBuffer

简单的来说:String 类中使用 final 关键字修饰字符数组来保存字符串,private final char value[],所以String 对象是不可变的。

StringBuilderStringBuffer 都继承自 AbstractStringBuilder 类,在 AbstractStringBuilder 中也是使用字符数组保存字符串char[]value 但是没有用 final 关键字修饰,所以这两种对象都是可变的

线程安全性

  • String 中的对象是不可变的,也就可以理解为常量,线程安全。
  • StringBuffer 对方法加了同步锁或者对调用的方法加了同步锁,所以是线程安全的。
  • StringBuilder 并没有对方法进行加同步锁,所以是非线程安全的。

性能

每次对 String 类型进行改变的时候,都会生成一个新的String 对象,然后将指针指向新的 String 对象。StringBuffer 每次都会对 StringBuffer 对象本身进行操作,而不是生成新的对象并改变对象引用。相同情况下使用 StringBuilder 相比使用 StringBuffer 仅能获得 10%~15% 左右的性能提升,但却要冒多线程不安全的风险。

对于三者使用的总结:

  • 操作少量的数据: 适用 String
  • 单线程操作字符串缓冲区下操作大量数据: 适用 StringBuilder
  • 多线程操作字符串缓冲区下操作大量数据: 适用 StringBuffer

在 Java 9 之后,String 类的实现改用 byte 数组存储字符串private final byte[] value;


为什么使用byte字节而舍弃了char字符:

节省内存占用,byte占一个字节(8位),char占用2个字节(16),相较char节省一半的内存空间。节省gc压力。
针对初始化的字符,对字符长度进行判断选择不同的编码方式。如果是 LATIN-1 编码,则右移0位,数组长度即为字符串长度。而如果是 UTF16 编码,则右移1位,数组长度的二分之一为字符串长度。

4.2 Object 类的常见方法总结

Object 类是一个特殊的类,是所有类的父类。它主要提供了以下 11 个方法:


public final native Class<?> getClass()//native方法,用于返回当前运行时对象的Class对象,使用了final关键字修饰,故不允许子类重写。

public native int hashCode() //native方法,用于返回对象的哈希码,主要使用在哈希表中,比如JDK中的HashMap。
public boolean equals(Object obj)//用于比较2个对象的内存地址是否相等,String类对该方法进行了重写用户比较字符串的值是否相等。

protected native Object clone() throws CloneNotSupportedException//naitive方法,用于创建并返回当前对象的一份拷贝。一般情况下,对于任何对象 x,表达式 x.clone() != x 为true,x.clone().getClass() == x.getClass() 为true。Object本身没有实现Cloneable接口,所以不重写clone方法并且进行调用的话会发生CloneNotSupportedException异常。

public String toString()//返回类的名字@实例的哈希码的16进制的字符串。建议Object所有的子类都重写这个方法。

public final native void notify()//native方法,并且不能重写。唤醒一个在此对象监视器上等待的线程(监视器相当于就是锁的概念)。如果有多个线程在等待只会任意唤醒一个。

public final native void notifyAll()//native方法,并且不能重写。跟notify一样,唯一的区别就是会唤醒在此对象监视器上等待的所有线程,而不是一个线程。

public final native void wait(long timeout) throws InterruptedException//native方法,并且不能重写。暂停线程的执行。注意:sleep方法没有释放锁,而wait方法释放了锁 。timeout是等待时间。

public final void wait(long timeout, int nanos) throws InterruptedException//多了nanos参数,这个参数表示额外时间(以毫微秒为单位,范围是 0-999999)。 所以超时的时间还需要加上nanos毫秒。

public final void wait() throws InterruptedException//跟之前的2个wait方法一样,只不过该方法一直等待,没有超时时间这个概念

protected void finalize() throws Throwable {
    
     }//实例被垃圾回收器回收的时候触发的操作

4.3 Java 序列化中如果有些字段不想进行序列化,怎么办?

对于不想进行序列化的变量,使用transient关键字修饰。

transient 关键字的作用是:阻止实例中那些用此关键字修饰的的变量序列化;当对象被反序列化时,被 transient 修饰的变量值不会被持久化和恢复。transient 只能修饰变量,不能修饰类和方法。

4.4 获取用键盘输入常用的两种方法

方法 1:通过 Scanner

Scanner input = new Scanner(System.in);
String s  = input.nextLine();
input.close();

方法 2:通过 BufferedReader

BufferedReader input = new BufferedReader(new InputStreamReader(System.in));
String s = input.readLine();

Java核心技术

1 反射机制

JAVA 反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意一个方法和属性;这种动态获取的信息以及动态调用对象的方法的功能称为 java 语言的反射机制。

1.1 静态编译和动态编译

静态编译: 在编译时确定类型,绑定对象
动态编译: 运行时确定类型,绑定对象

1.2 反射机制优缺点

优点: 运行期类型的判断,动态加载类,提高代码灵活度。

缺点:
1,性能瓶颈:反射相当于一系列解释操作,通知 JVM 要做的事情,性能比直接的 java 代码要慢很多。
2,安全问题,让我们可以动态操作改变类的属性同时也增加了类的安全隐患。

1.3 反射的应用场景

反射是框架设计的灵魂。

在我们平时的项目开发过程中,基本上很少会直接使用到反射机制,但这不能说明反射机制没有用,实际上有很多设计、开发都与反射机制有关,例如模块化的开发,通过反射去调用对应的字节码;动态代理设计模式也采用了反射机制,还有我们日常使用的 Spring/Hibernate 等框架也大量使用到了反射机制。

举例:

  1. 我们在使用 JDBC 连接数据库时使用 Class.forName() 通过反射加载数据库的驱动程序;
  2. Spring 框架的 IOC(动态加载管理 Bean)创建对象以及 AOP(动态代理)功能都和反射有联系;
  3. 动态配置实例的属性;

2. 异常

2.1. Java 异常类层次结构图

在这里插入图片描述
在 Java 中,所有的异常都有一个共同的祖先 java.lang 包中的 Throwable 类。Throwable 类有两个重要的子类 Exception(异常)和Error(错误)。Exception 能被程序本身处理(try-catch),Error 是无法处理的(只能尽量避免)。

Exception 和 Error 二者都是 Java 异常处理的重要子类,各自都包含大量子类。

  • Exception :程序本身可以处理的异常,可以通过 catch 来进行捕获。Exception 又可以分为 受检查异常(必须处理) 和 不受检查异常(可以不处理)。
  • Error :Error 属于程序无法处理的错误 ,我们没办法通过 catch 来进行捕获 。例如,Java 虚拟机运行错误(Virtual MachineError)、虚拟机内存不够错误(OutOfMemoryError)、类定义错误(NoClassDefFoundError)等 。这些异常发生时,Java 虚拟机(JVM)一般会选择线程终止。

受检查异常

Java 代码在编译过程中,如果受检查异常没有被 catch/throw 处理的话,就没办法通过编译 。比如下面这段 IO 操作的代码。
在这里插入图片描述
除了RuntimeException及其子类以外,其他的Exception类及其子类都属于检查异常 。常见的受检查异常有: IO 相关的异常、ClassNotFoundExceptionSQLException…。

不受检查异常

Java 代码在编译过程中 ,我们即使不处理不受检查异常也可以正常通过编译。

RuntimeException 及其子类都统称为非受检查异常,例如:NullPointExecrptionNumberFormatException(字符串转换为数字)、ArrayIndexOutOfBoundsException(数组越界)、ClassCastException(类型转换错误)、ArithmeticException(算术错误)等。

2.2 Throwable 类常用方法

  • public string getMessage():返回异常发生时的简要描述
  • public string toString():返回异常发生时的详细信息
  • public string getLocalizedMessage():返回异常对象的本地化信息。使用 Throwable 的子类覆盖这个方法,可以生成本地化信息。如果子类没有覆盖该方法,则该方法返回的信息与 getMessage()返回的结果相同
  • public void printStackTrace():在控制台上打印 Throwable 对象封装的异常信息

2.3 try-catch-finally

  • try块: 用于捕获异常。其后可接零个或多个 catch 块,如果没有 catch 块,则必须跟一个 finally 块。
  • catch块: 用于处理 try 捕获到的异常。
    finally 块: 无论是否捕获或处理异常,finally 块里的语句都会被执行。当在 try 块或 catch 块中遇到 return 语句时,finally 语句块将在方法返回之前被执行。

在以下 4 种特殊情况下,finally 块不会被执行:

  1. 在 finally 语句块第一行发生了异常。 因为在其他行,finally 块还是会得到执行
  2. 在前面的代码中用了 System.exit(int)已退出程序。 exit 是带参函数 ;若该语句在异常语句之后,finally 会执行
  3. 程序所在的线程死亡。
  4. 关闭 CPU。

注意:当 try 语句和 finally 语句中都有 return 语句时,在方法返回之前,finally 语句的内容将被执行,并且 finally 语句的返回值将会覆盖原始的返回值。如下:

public class Test {
    
    
    public static int f(int value) {
    
    
        try {
    
    
            return value * value;
        } finally {
    
    
            if (value == 2) {
    
    
                return 0;
            }
        }
    }
}

如果调用 f(2),返回值将是 0,因为 finally 语句的返回值覆盖了 try 语句块的返回值。

2.4 使用 try-with-resources 来代替 try-catch-finally

  1. 适用范围(资源的定义): 任何实现 java.lang.AutoCloseable 或者 java.io.Closeable 的对象
  2. 关闭资源和 final 的执行顺序: 在 try-with-resources 语句中,任何 catchfinally 块在声明的资源关闭后运行

《Effecitve Java》中明确指出:

面对必须要关闭的资源,我们总是应该优先使用 try-with-resources 而不是 try-finally 。随之产生的代码更简短,更清晰,产生的异常对我们也更有用。try-with-resources 语句让我们更容易编写必须要关闭的资源的代码,若采用 try-finally 则几乎做不到这点。

Java 中类似于InputStreamOutputStreamScannerPrintWriter 等的资源都需要我们调用 close() 方法来手动关闭,一般情况下我们都是通过 try-catch-finally 语句来实现这个需求,如下:

        //读取文本文件的内容
        Scanner scanner = null;
        try {
    
    
            scanner = new Scanner(new File("D://read.txt"));
            while (scanner.hasNext()) {
    
    
                System.out.println(scanner.nextLine());
            }
        } catch (FileNotFoundException e) {
    
    
            e.printStackTrace();
        } finally {
    
    
            if (scanner != null) {
    
    
                scanner.close();
            }
        }

使用 Java 7 之后的 try-with-resources 语句改造上面的代码:

try (Scanner scanner = new Scanner(new File("test.txt"))) {
    
    
    while (scanner.hasNext()) {
    
    
        System.out.println(scanner.nextLine());
    }
} catch (FileNotFoundException fnfe) {
    
    
    fnfe.printStackTrace();
}

当然多个资源需要关闭的时候,使用 try-with-resources 实现起来也非常简单,如果你还是用 try-catch-finally 可能会带来很多问题。

通过使用分号分隔,可以在 try-with-resources 块中声明多个资源。

try (BufferedInputStream bin = new BufferedInputStream(new FileInputStream(new File("test.txt")));
             BufferedOutputStream bout = new BufferedOutputStream(new FileOutputStream(new File("out.txt")))) {
    
    
            int b;
            while ((b = bin.read()) != -1) {
    
    
                bout.write(b);
            }
        }
        catch (IOException e) {
    
    
            e.printStackTrace();
        }

3. 多线程

3.1. 简述线程、程序、进程的基本概念。以及他们之间关系是什么?

线程与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中可以产生多个线程。与进程不同的是同类的多个线程共享同一块内存空间和一组系统资源,所以系统在产生一个线程,或是在各个线程之间作切换工作时,负担要比进程小得多,也正因为如此,线程也被称为轻量级进程。

程序是含有指令和数据的文件,被存储在磁盘或其他的数据存储设备中,也就是说程序是静态的代码。

进程是程序的一次执行过程,是系统运行程序的基本单位,因此进程是动态的。系统运行一个程序即是一个进程从创建,运行到消亡的过程。简单来说,一个进程就是一个执行中的程序,它在计算机中一个指令接着一个指令地执行着,同时,每个进程还占有某些系统资源如 CPU 时间,内存空间,文件,输入输出设备的使用权等等。换句话说,当程序在执行时,将会被操作系统载入内存中。 线程是进程划分成的更小的运行单位。线程和进程最大的不同在于基本上各进程是独立的,而各线程则不一定,因为同一进程中的线程极有可能会相互影响。从另一角度来说,进程属于操作系统的范畴,主要是同一段时间内,可以同时执行一个以上的程序,而线程则是在同一程序内几乎同时执行一个以上的程序段。

3.2. 线程有哪些基本状态?

Java 线程在运行的生命周期中的指定时刻只可能处于下面 6 种不同状态的其中一个状态(图源《Java 并发编程艺术》4.1.4 节)。

在这里插入图片描述
线程在生命周期中并不是固定处于某一个状态而是随着代码的执行在不同状态之间切换。Java 线程状态变迁如下图所示(图源《Java 并发编程艺术》4.1.4 节):

在这里插入图片描述
由上图可以看出:

线程创建之后它将处于 NEW(新建) 状态,调用 start() 方法后开始运行,线程这时候处于 READY(可运行) 状态。可运行状态的线程获得了 cpu 时间片(timeslice)后就处于 RUNNING(运行) 状态。

操作系统隐藏 Java 虚拟机(JVM)中的 READY 和 RUNNING 状态,它只能看到 RUNNABLE 状态(图源:HowToDoInJava:Java Thread Life Cycle and Thread States),所以 Java 系统一般将这两个状态统称为 RUNNABLE(运行中) 状态 。

在这里插入图片描述

当线程执行 wait() 方法之后,线程进入 WAITING(等待) 状态。进入等待状态的线程需要依靠其他线程的通知才能够返回到运行状态,而 TIME_WAITING(超时等待) 状态相当于在等待状态的基础上增加了超时限制,比如通过 sleep(long millis) 方法或 wait(long millis)方法可以将 Java 线程置于 TIMED WAITING 状态。当超时时间到达后 Java 线程将会返回到 RUNNABLE 状态。当线程调用同步方法时,在没有获取到锁的情况下,线程将会进入到 BLOCKED(阻塞) 状态。线程在执行 Runnable 的 run() 方法之后将会进入到 TERMINATED(终止) 状态。

4. 文件与 I\O 流

4.1. Java 中 IO 流分为几种?

  • 按照流的流向分,可以分为输入流和输出流;
  • 按照操作单元划分,可以划分为字节流和字符流;
  • 按照流的角色划分为节点流和处理流。

Java Io 流共涉及 40 多个类,这些类看上去很杂乱,但实际上很有规则,而且彼此之间存在非常紧密的联系, Java I0 流的 40 多个类都是从如下 4 个抽象类基类中派生出来的。

  • InputStream/Reader: 所有的输入流的基类,前者是字节输入流,后者是字符输入流。
  • OutputStream/Writer: 所有输出流的基类,前者是字节输出流,后者是字符输出流。

按操作方式分类结构图:

在这里插入图片描述

按操作对象分类结构图:

在这里插入图片描述

4.1.1 既然有了字节流,为什么还要有字符流?

问题本质想问:不管是文件读写还是网络发送接收,信息的最小存储单元都是字节,那为什么 I/O 流操作要分为字节流操作和字符流操作呢?

回答:字符流是由 Java 虚拟机将字节转换得到的,问题就出在这个过程还算是非常耗时,并且,如果我们不知道编码类型就很容易出现乱码问题。所以, I/O 流就干脆提供了一个直接操作字符的接口,方便我们平时对字符进行流操作。如果音频文件、图片等媒体文件用字节流比较好,如果涉及到字符的话使用字符流比较好。

3.4.1.2. BIO,NIO,AIO 有什么区别?

  • BIO (Blocking I/O): 同步阻塞 I/O 模式,数据的读取写入必须阻塞在一个线程内等待其完成。在活动连接数不是特别高(小于单机 1000)的情况下,这种模型是比较不错的,可以让每一个连接专注于自己的 I/O 并且编程模型简单,也不用过多考虑系统的过载、限流等问题。线程池本身就是一个天然的漏斗,可以缓冲一些系统处理不了的连接或请求。但是,当面对十万甚至百万级连接的时候,传统的 BIO 模型是无能为力的。因此,我们需要一种更高效的 I/O 处理模型来应对更高的并发量。
  • NIO (Non-blocking/New I/O): NIO 是一种同步非阻塞的 I/O 模型,在 Java 1.4 中引入了 NIO 框架,对应 java.nio 包,提供了 Channel , Selector,Buffer 等抽象。NIO 中的 N 可以理解为 Non-blocking,不单纯是 New。它支持面向缓冲的,基于通道的 I/O 操作方法。 NIO 提供了与传统 BIO 模型中的 SocketServerSocket 相对应的 SocketChannelServerSocketChannel 两种不同的套接字通道实现,两种通道都支持阻塞和非阻塞两种模式。阻塞模式使用就像传统中的支持一样,比较简单,但是性能和可靠性都不好;非阻塞模式正好与之相反。对于低负载、低并发的应用程序,可以使用同步阻塞 I/O 来提升开发速率和更好的维护性;对于高负载、高并发的(网络)应用,应使用 NIO 的非阻塞模式来开发
  • AIO (Asynchronous I/O): AIO 也就是 NIO 2。在 Java 7 中引入了 NIO 的改进版 NIO 2,它是异步非阻塞的 IO 模型。异步 IO 是基于事件和回调机制实现的,也就是应用操作之后会直接返回,不会堵塞在那里,当后台处理完成,操作系统会通知相应的线程进行后续的操作。AIO 是异步 IO 的缩写,虽然 NIO 在网络操作中,提供了非阻塞的方法,但是 NIO 的 IO 行为还是同步的。对于 NIO 来说,我们的业务线程是在 IO 操作准备好时,得到通知,接着就由这个线程自行进行 IO 操作,IO 操作本身是同步的。查阅网上相关资料,我发现就目前来说 AIO 的应用还不是很广泛,Netty 之前也尝试使用过 AIO,不过又放弃了。

【注:以上内容为从网上整理而来,仅用于知识积累】

猜你喜欢

转载自blog.csdn.net/weixin_42547014/article/details/110920077