J.U.C 学习(八)之 “线程池”

线程池

前言

在 Java 中,如果每个请求到达就创建一个新线程,创建和销毁线程花费的时间和消耗的系统资源都相当大,甚至可能要比在处理实际的用户请求的时间和资源要多的多。如果在一个 Jvm 里创建太多的线程,可能会使系统由于过度消耗内存或“频繁的上下文切换”而导致系统资源不足

为了解决这个问题,就有了线程池的概念,线程池的核心逻辑是提前创建好若干个线程放在一个容器中。如果有任务需要处理,则将任务直接分配给线程池中的线程来执行就行,任务处理完以后这个线程不会被销毁,而是等待后续分配任务。同时通过线程池来重复管理线程还可以避免创建大量线程增加开销。

线程池的优势
合理的使用线程池,可以带来一些好处

  1. 降低创建线程和销毁线程的性能开销
  2. 提高响应速度,当有新任务需要执行是不需要等待线程创建就可以立马执行
  3. 合理的设置线程池大小可以避免因为线程数超过硬件资源瓶颈带来的问题

Java中提供的线程池API(常用的4种)

为了方便大家对于线程池的使用,在 Executors 里面提供了几个线程池的工厂方法,这样,很多新手就不需要了解太多关于 ThreadPoolExecutor 的知识了,只需要直接使用Executors 的工厂方法,就可以使用线程池:

  • newFixedThreadPool 定长线程池:该方法返回一个固定数量的线程池,线程数不变,当有一个任务提交时,若线程池中空闲,则立即执行,若没有,则会被暂缓在一个任务队列中,等待有空闲的线程去执行。
  • newSingleThreadExecutor 单线程化线程池: 创建一个线程的线程池,若空闲则执行,若没有空闲线程则暂缓在任务队列中。
  • newCachedThreadPool 可缓存线程池:返回一个可根据实际情况调整线程个数的线程池,不限制最大线程数量,若用空闲的线程则执行任务,若无任务则不创建线程。并且每一个空闲线程会在 60 秒后自动回收
  • newScheduledThreadPool 定时线程池: 创建一个可以指定线程的数量的线程池,但是这个线程池还带有延迟和周期性执行任务的功能,类似定时器

在这里插入图片描述
此图片转载至:https://jimmysun.blog.csdn.net/article/details/95225769

先用一个简单的demo展示线程池的用法
在 Java 中怎么创建线程池呢?下面这段代码演示了创建三个固定线程数的线程池

public class Test implements Runnable {
    
    
    @Override
    public void run() {
    
    
        try {
    
    
            Thread.sleep(10);
        } catch (InterruptedException e) {
    
    
            e.printStackTrace();
        }
        System.out.println(Thread.currentThread().getName());
    }

    static ExecutorService service = Executors.newFixedThreadPool(3);

    public static void main(String[] args) {
    
    
        for (int i = 0; i < 100; i++) {
    
    
            service.execute(new Test());
        }
        service.shutdown();
    }
}

上面提到的四种线程池的构建,都是基于 ThreadpoolExecutor 来构建的,我们来一起分析下ThreadpoolExecutor源码

ThreadpoolExecutor 有多个重载的构造方法,我们可以基于它最完整的构造方法来分析;先来解释一下每个参数的作用,稍后我们在分析源码的过程中再来详细了解参数的意义。

 public ThreadPoolExecutor(int corePoolSize,//核心线程数量
                        int maximumPoolSize,//最大线程数
                          long keepAliveTime,//超时时间,超出核心线程数量以外的线程空余存活时间
                          TimeUnit unit,//存活时间单位
                          BlockingQueue<Runnable> workQueue,//保存执行任务的队列
                          ThreadFactory threadFactory,//创建新线程使用的工厂
                          RejectedExecutionHandler handler) {
    
    //当任务无法执行的时候的处理方式
    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
         Executors.defaultThreadFactory(), handler);
}

线程池初始化以后做了什么事情?
线程池初始化时是没有创建线程的(用到再创建),线程池里的线程的初始化与其他线程一样,但是在完成任务以后,该线程不会自行销毁,而是以挂起的状态返回到线程池。直到应用程序再次向线程池发出请求时,线程池里挂起的线程就会再度激活执行任务。这样既节省了建立线程所造成的性能损耗,也可以让多个任务反复重用同一线程,从而在应用程序生存期内节约大量开销

我们先看最常用的FixedThreadPool的源码

在这里插入图片描述

FixedThreadPool 的核心线程数和最大线程数都是指定值,也就是说当线程池中的线程数超过核心线程数后,任务都会被放到阻塞队列中。另外 keepAliveTime 为 0,也就是超出核心线程数量以外的线程空余存活时间为0,,而这里选用的阻塞队列是 LinkedBlockingQueue,使用的是默认容量 Integer.MAX_VALUE,相当于没有上限

这个线程池执行任务的流程如下:

  1. 线程数少于核心线程数,也就是设置的线程数时,新建线程执行任务
  2. 线程数等于核心线程数后,将任务加入阻塞队列
  3. 由于队列容量非常大,可以一直添加
  4. 执行完任务的线程反复去队列中取任务执行

用途:FixedThreadPool 用于负载比较大的服务器,为了资源的合理利用,需要限制当前线程数量

线程池中定义的线程数量一般分为两种

  1. 当利用cpu高时,线程池线程数量一般定义为和cpu核心数相等 例如8核cpu的线程池中线程数定义为8
  2. 当线程进行io操作多时,线程池数量一般定义为 cpu数 x 2

接着分析 newCachedThreadPool 的源码
在这里插入图片描述
CachedThreadPool 创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程; 并且没有核心线程,非核心线程数无上限,但是每个空闲的时间只有 60 秒,超过后就会被回收。

它的执行流程如下:

  1. 如果有空闲线程,就去取出任务执行;如果没有空闲线程,就新建一个
  2. 没有核心线程,直接向 SynchronousQueue 队列中添加任务
  3. 执行完任务的线程有 60 秒生存时间,如果在这个时间内可以接到新任务,就可以继续活下去,否则就被回收

newSingleThreadExecutor 分析
创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行

在这里插入图片描述

线程池的实现原理分析

线程池的基本使用我们都清楚了,接下来我们来了解一下线程池的实现原理ThreadPoolExecutor 是线程池的核心,提供了线程池的实现。 ScheduledThreadPoolExecutor 继承了 ThreadPoolExecutor,并另外提供一些调度方法以支持定时和周期任务。Executors 是工具类,主要用来创建线程池对象 我们把一个任务提交给线程池去处理的时候,线程池的处理过程是什么样的呢?首先直接来看看定义

线程池原理分析(FixedThreadPool)

在这里插入图片描述
ThreadPoolExecutor 源码分析

public void execute(Runnable command) {
    
    
    if (command == null)
        throw new NullPointerException();
    int c = ctl.get();
    if (workerCountOf(c) < corePoolSize) {
    
    //1.当前池中线程比核心数少,新建一个线程执行任务
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    if (isRunning(c) && workQueue.offer(command)) {
    
    //2.核心池已满,但任务队列未满,添加到队列中
        int recheck = ctl.get();
        //任务成功添加到队列以后,再次检查是否需要添加新的线程,因为已存在的线程可能被销毁了
        if (! isRunning(recheck) && remove(command))
            reject(command);//如果线程池处于非运行状态,并且把当前的任务从任务队列中移除成功,则拒绝该任务
        else if (workerCountOf(recheck) == 0)//如果之前的线程已被销毁完,新建一个线程
            addWorker(null, false);
    }
    else if (!addWorker(command, false))//3.核心池已满,队列已满,试着创建一个新线程
        reject(command);//如果创建新线程失败了,说明线程池被关闭或者线程池完全满了, 拒绝任务
}

ctl的作用
在线程池中,ctl 贯穿在线程池的整个生命周期中,它是一个原子类,主要作用是用来保存线程数量和线程池的状态。他用到了位运算。一个 int 数值是 32 个 bit 位,这里采用高 3 位来保存运行状态,低 29 位来保存线程数量。

private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));

线程池的状态

private static final int RUNNING    = -1 << COUNT_BITS;// 接收新任务,并执行队列中的任务
private static final int SHUTDOWN   =  0 << COUNT_BITS;// 不接收新任务,但是执行队列中的任务
private static final int STOP       =  1 << COUNT_BITS;//不接收新任务,不执行队列中的任务,中断正在执行中的任务
private static final int TIDYING    =  2 << COUNT_BITS;//所有的任务都已结束,线程数量为0,处于该状态的线程池即将调用 terminated()方法
private static final int TERMINATED =  3 << COUNT_BITS;// terminated()方法执行完成

状态转化
在这里插入图片描述
addWorker 添加工人(线程)
如果工作线程数小于核心线程数的话,会调用 addWorker,顾名思义,其实就是要创建一个工作线程。我们来看看源码的实现。源码比较长,看起来比较唬人,但其实就做了两件事。

  1. 才用循环 CAS 操作来将线程数加 1;
  2. 新建一个线程并启用。
private boolean addWorker(Runnable firstTask, boolean core) {
    
    
    retry: //goto语句,避免死循环
    for (;;) {
    
    
        int c = ctl.get();
        int rs = runStateOf(c);

        // Check if queue empty only if necessary.
        
/* 如果线程处于非运行状态,并且 rs 不等于 SHUTDOWN 且 firstTask 不等于空且 workQueue 为空,直接返回 false(表示不可添加 work 状态)
1. 线程池已经 shutdown 后,还要添加新的任务,拒绝
2. (第二个判断)SHUTDOWN 状态不接受新任务,但仍然会执行已经加入任务队列的任务,所以当进入 SHUTDOWN 状态,而传进来的任务为空,并且任务队列不为空的时候,是允许添加新线程的,如果把这个条件取反,就表示不允许添加 worker */

        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN &&
               firstTask == null &&
               ! workQueue.isEmpty()))
            return false;

        for (;;) {
    
    //自旋
            int wc = workerCountOf(c);//获得Worker工作线程数
            //如果工作线程数大于默认容量大小或者大于核心线程数大小,则直接返回 false 表示不 能再添加 worker。
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            if (compareAndIncrementWorkerCount(c))
            	//通过cas来增加工作线程数, 如果 cas 失败,则直接重试
                break retry;
            c = ctl.get();  // Re-read ctl //再次获取ctl的值
            if (runStateOf(c) != rs)//这里如果不想等,说明线程的状态发生了变化,继续重试
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
        }
    }
	//上面这段代码主要是对 worker 数量做原子+1 操作,下面的逻辑才是正式构建一个 worker
    boolean workerStarted = false;//工作线程是否启动的标识
    boolean workerAdded = false;//工作线程是否已经添加成功的标识
    Worker w = null;
    try {
    
    
    	//构建一个Worker,这个worker是什么呢?我们 可以看到构造方法里面传入了一个 Runnable 对象
        w = new Worker(firstTask);
        final Thread t = w.thread;//从 worker 对象中取出线程
        if (t != null) {
    
    
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock(); //这里有个重入锁,避免并发问题
            try {
    
    
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                int rs = runStateOf(ctl.get());
				//只有当前线程池是正在运行状态,[或是 SHUTDOWN 且 firstTask 为空],才
				//能添加到 workers 集合中
                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) {
    
    
                    //任务刚封装到 work 里面,还没 start,你封装的线程就是 alive,几个意思?肯定是要抛异常出去的
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    workers.add(w);//将新创建的Worker添加到workers集合中
                    int s = workers.size();
                    //如果集合中的工作线程数大于最大线程数,这个最大线程数表示线程池曾经出现过的最大线程数
                    if (s > largestPoolSize)
                        largestPoolSize = s;//更新线程池出现过的最大线程数
                    workerAdded = true;//更新线程池出现过的最大线程数
                }
            } finally {
    
    
                mainLock.unlock();//释放锁
            }
            if (workerAdded) {
    
    //如果worker添加成功
                t.start();//启动线程
                workerStarted = true;
            }
        }
    } finally {
    
    
        if (! workerStarted)
        	//如果添加失败,就需要做一件事,就是递减实际工作线程数(还记得我们最开始的时候增加了工作线程数吗)
            addWorkerFailed(w);
    }
    return workerStarted;//返回结果
}

Worker 类说明

private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
    
    
        /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
        private static final long serialVersionUID = 6138294804551838833L;

        /** Thread this worker is running in.  Null if factory fails. */
        final Thread thread;//这才是真正执行task的线程,从构造函数可知是由 ThreadFactury 创建的
        /** Initial task to run.  Possibly null. */
        Runnable firstTask;//这就是需要执行的 task
        /** Per-thread task counter */
        volatile long completedTasks;//完成的任务数,用于线程池统计

        /**
         * Creates with given first task and thread from ThreadFactory.
         * @param firstTask the first task (null if none)
         */
        Worker(Runnable firstTask) {
    
    
        	//初始状态 -1,防止在调用 runWorker(),也就是真正执行 task前中断 thread。
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }

        /** Delegates main run loop to outer runWorker  */
        public void run() {
    
    
            runWorker(this);
        }

我们发现 addWorker 方法只是构造了一个 Worker,并且把 firstTask 封装到 worker 中,它是 做什么的呢?我们来看看

  1. 每个worker,都是一条线程,同时里面包含了一个firstTask,即初始化时要被首先执行的任务.
  2. 最终执行任务的,是 runWorker()方法

    Worker 类继承了 AQS,并实现了 Runnable 接口,注意其中的 firstTask 和 thread 属性: firstTask 用它来保存传入的任务;thread 是在调用构造方法时通过 ThreadFactory 来创建的线程,是用来处理任务的线程。
    在调用构造方法时,需要传入任务,这里通过 getThreadFactory().newThread(this);来新建一个线程,newThread 方法传入的参数是 this,因为 Worker 本身继承了 Runnable 接口, 也就是一个线程,所以一个 Worker 对象在启动的时候会调用 Worker 类中的 run 方法。 Worker 继承了 AQS,使用 AQS 来实现独占锁的功能。为什么不使用 ReentrantLock 来实现呢?可以看到 tryAcquire 方法,它是不允许重入的,而 ReentrantLock 是允许重入的: lock 方法一旦获取了独占锁,表示当前线程正在执行任务中;那么它会有以下几个作用

    • 如果正在执行任务,则不应该中断线程;
    • 如果该线程现在不是独占锁的状态,也就是空闲的状态,说明它没有在处理任务,这时可
      以对该线程进行中断;
    • 线程池在执行 shutdown 方法或 tryTerminate 方法时会调用 interruptIdleWorkers 方法来 中断空闲的线程,interruptIdleWorkers 方法会使用 tryLock 方法来判断线程池中的线程是否是空闲状态
    • 之所以设置为不可重入,是因为我们不希望任务在调用像 setCorePoolSize 这样的线程池 控制方法时重新获取锁,这样会中断正在运行的线程

addWorkerFailed
addWorker 方法中,如果添加 Worker 并且启动线程失败,则会做失败后的处理。 这个方法主要做两件事

  1. 如果 worker 已经构造好了,则从 workers 集合中移除这个 worker
  2. 原子递减核心线程数(因为在 addWorker 方法中先做了原子增加)
  3. 尝试结束线程池
private void addWorkerFailed(Worker w) {
    
    
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
    
    
        if (w != null)
            workers.remove(w);
        decrementWorkerCount();
        tryTerminate();
    } finally {
    
    
        mainLock.unlock();
    }
}

runWorker 方法
前面已经了解了 ThreadPoolExecutor 的核心方法 addWorker,主要作用是增加工作线程, 而 Worker 简单理解其实就是一个线程,里面重新了 run 方法,这块是线程池中执行任务的真正处理逻辑,也就是 runWorker 方法,这个方法主要做几件事

  1. 如果 task 不为空,则开始执行 task
  2. 如果 task 为空,则通过 getTask()再去取任务,并赋值给 task,如果取到的 Runnable 不为空,则 执行该任务
  3. 执行完毕后,通过 while 循环继续 getTask()取任务
  4. 如果 getTask()取到的任务依然是空,那么整个 runWorker()方法执行完毕
final void runWorker(Worker w) {
    
    
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
	/* unlock,表示当前 worker 线程允许中断,因为 new Worker 默认的 state=-1,此处是调用 Worker 类的 tryRelease()方法,将 state 置为 0,
而 interruptIfStarted()中只有 state>=0 才允许调用中断 */
    w.unlock(); // allow interrupts
    boolean completedAbruptly = true;
    try {
    
    
    	//注意这个while循环,在这里实现了[线程复用],如果task 为空,则通过 getTask 来获取任务
        while (task != null || (task = getTask()) != null) {
    
    
            w.lock();//上锁,不是为了防止并发执行任务,为了在shutdown()时不终止正在运行的 worker
            /* 线程池为 stop 状态时不接受新任务,不执行已经加入任务队列的任务,还中断正在执
行的任务,所以对于 stop 状态以上是要中断线程的,(Thread.interrupted() &&runStateAtLeast(ctl.get(), STOP)确保线 程中断标志位为 true 且是 stop 状态以上,接着清除了中断标志*/
            //!wt.isInterrupted()则再一次检查保证线程需要设置中断标志位
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();
            try {
    
    
            //这里默认是没有实现的,在一些特定的场景中 我们可以自己继承 ThreadpoolExecutor 自己重写
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
    
    
                    task.run();//执行任务中的run方法
                } catch (RuntimeException x) {
    
    
                    thrown = x; throw x;
                } catch (Error x) {
    
    
                    thrown = x; throw x;
                } catch (Throwable x) {
    
    
                    thrown = x; throw new Error(x);
                } finally {
    
    
                    afterExecute(task, thrown);//这里默认也是没有实现
                }
            } finally {
    
    
            	//置空任务(这样下次循环开始时,task 依然为 null,需要再通过 getTask()取) + 记录该 Worker 完成任务数量 + 解锁
                task = null;
                w.completedTasks++;
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {
    
    
    	//1.将入参 worker 从数组 workers 里删除掉;
		//2.根据布尔值 allowCoreThreadTimeOut 来决定是否补充新的 Worker 进数组 workers
        processWorkerExit(w, completedAbruptly);
    }
}

getTask方法
worker 线程会从阻塞队列中获取需要执行的任务,这个方法不是简单的 take 数据,我们来分析下他的源码实现

线程从工作队列 pull 任务时,加上了超时 限制,如果线程在 keepAliveTime 的时间内 poll 不到任务,那我就认为这条线程没事做, 可以干掉了,看看这个代码片段你就清楚了

private Runnable getTask() {
    
    
    boolean timedOut = false; // Did the last poll() time out?

    for (;;) {
    
    
        int c = ctl.get();
        int rs = runStateOf(c);
		/* 对线程池状态的判断,两种情况会 workerCount-1,并且返回 null
		1. 线程池状态为 shutdown,且 workQueue 为空(反映了 shutdown 状态的线程池还是
		要执行 workQueue 中剩余的任务的)
		2. 线程池状态为 stop(shutdownNow()会导致变成 STOP)(此时不用考虑 workQueue
		的情况)*/
        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
    
    
            decrementWorkerCount();
            return null;//返回 null,则当前 worker 线程会退出
        }

        int wc = workerCountOf(c);
		// timed变量用于判断是否需要进行超时控制。
		// allowCoreThreadTimeOut默认是false,也就是核心线程不允许进行超时; // wc > 			   corePoolSize,表示当前线程池中的线程数量大于核心线程数量;
		// 对于超过核心线程数量的这些线程,需要进行超时控制
        // Are workers subject to culling?
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
		/* 1. 线程数量超过maximumPoolSize可能是线程池在运行时被调用了setMaximumPoolSize() 被改变了大小,否则已经 addWorker()成功不会超过 maximumPoolSize
2. timed && timedOut 如果为 true,表示当前操作需要进行超时控制,并且上次从阻塞队列中 获取任务发生了超时.其实就是体现了空闲线程的存活时间* /
        if ((wc > maximumPoolSize || (timed && timedOut))
            && (wc > 1 || workQueue.isEmpty())) {
            if (compareAndDecrementWorkerCount(c))
                return null;
            continue;
        }

        try {
        /*根据 timed 来判断,如果为 true,则通过阻塞队列 poll 方法进行超时控制,如果在 keepaliveTime 时间内没有获取到任务,则返回 null.
否则通过 take 方法阻塞式获取队列中的任务*/
            Runnable r = timed ?
                workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                workQueue.take();
            if (r != null)//如果拿到的任务不为空,则直接返回给worker进行处理
                return r;
            timedOut = true;//如果 r==null,说明已经超时了,设置 timedOut=true,在下次自旋的时候进行回收
        } catch (InterruptedException retry) {
    
    
            timedOut = false;// 如果获取任务时当前线程发生了中断,则设置 timedOut 为false 并返回循环重试
        }
    }
}

这里重要的地方是第二个 if 判断,目的是控制线程池的有效线程数量。由上文中的分析可以 知道,在执行 execute 方法时,如果当前线程池的线程数量超过了 corePoolSize 且小于 maximumPoolSize,并且 workQueue 已满时,则可以增加工作线程,但这时如果超时没有 获取到任务,也就是 timedOut 为 true 的情况,说明 workQueue 已经为空了,也就说明了 当前线程池中不需要那么多线程来执行任务了,可以把多于 corePoolSize 数量的线程销毁 掉,保持线程数量在 corePoolSize 即可。
什么时候会销毁?当然是 runWorker 方法执行完之后,也就是 Worker 中的 run 方法执行 完,由 JVM 自动回收。
getTask 方法返回 null 时,在 runWorker 方法中会跳出 while 循环,然后会执行 processWorkerExit 方法。

processWorkerExit 方法
runWorker 的 while 循环执行完毕以后,在 finally 中会调用 processWorkerExit,来销毁工作线 程。
到目前为止,我们已经从 execute 方法中输入了 worker 线程的创建到执行以及最后到销毁的全部过程。那么我们继续回到 execute 方法.我们只分析完
addWorker 这段逻辑,继续来看后面的判断

execute 后续逻辑分析

如果核心线程数已满,说明这个时候不能再创建核心线程了,于是走第二个判断
第二个判断逻辑比较简单,如果线程池处于运行状态并且任务队列没有满,则将任务添加到队列中第三个判断,核心线程数满了,队列也满了,那么这个时候创建新的线程也就是(非核心线程)如果非核心线程数也达到了最大线程数大小,则直接拒绝任务

public void execute(Runnable command) {
    
    
    if (command == null)
        throw new NullPointerException();
    int c = ctl.get();
    if (workerCountOf(c) < corePoolSize) {
    
    
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    if (isRunning(c) && workQueue.offer(command)) {
    
    //2.核心池已满,但任务队列未满,添加到队列中
        int recheck = ctl.get();
        //任务成功添加到队列以后,再次检查是否需要添加新的线程,因为已存在的线程可能被销毁了
        if (! isRunning(recheck) && remove(command))
            reject(command);//如果线程池处于非运行状态,并且把当前的任务从任务队列中移除成功,则拒绝该任务
        else if (workerCountOf(recheck) == 0)//如果之前的线程已被销毁完,新建一个线程
            addWorker(null, false);
    }
    else if (!addWorker(command, false))//3.核心池已满,队列已满,试着创建一个新线程
        reject(command);//如果创建新线程失败了,说明线程池被关闭或者线程池完全满了,拒绝任务
}

拒绝策略

  1. AbortPolicy:直接抛出异常,默认策略;
  2. CallerRunsPolicy:用调用者所在的线程来执行任务;
  3. DiscardOldestPolicy:丢弃阻塞队列中靠最前的任务,并执行当前任务;
  4. DiscardPolicy:直接丢弃任务;
    当然也可以根据应用场景实现 RejectedExecutionHandler 接口,自定义饱和策略,如记录日志或持久化存储不能处理的任务

线程池常见问题

  • 问:阿里开发手册不建议使用线程池?
    答:手册上是说:线程池的构建不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 的方式。分析完原理以后,大家自己一定要有一个答案。我来简单分析下:用 Executors 使得用户不需要关心线程池的参数配置,意味着大家对于线程池的运行规则也会慢慢的忽略。这会导致一个问题,比如我们用 newFixdThreadPool 或者 singleThreadPool.允许的队列长度为 Integer.MAX_VALUE,如果使用不当会导致大量请求堆积到队列中导致 OOM 的风险而 newCachedThreadPool,允许创建线程数量为 Integer.MAX_VALUE,也可能会导致大量线程的创建出现 CPU 使用过高或者 OOM 的问题而如果我们通过 ThreadPoolExecutor 来构造线程池的话,我们势必要了解线程池构造中每个参数的具体含义,使得开发者在配置参数的时候能够更加谨慎。不至于像有些同学去面试的时候被问到:构造一个线程池需要哪些参数,都回答不上来

  • 问:如何合理配置线程池的大小
    在遇到这类问题时,先冷静下来分析

  1. 需要分析线程池执行的任务的特性: CPU 密集型还是 IO 密集型
  2. 每个任务执行的平均时长大概是多少,这个任务的执行时长可能还跟任务处理逻辑是否涉 及到网络传输以及底层系统资源依赖有关系
    如果是 CPU 密集型,主要是执行计算任务,响应时间很快,cpu 一直在运行,这种任务 cpu 的利用率很高,那么线程数的配置应该根据 CPU 核心数来决定,CPU 核心数=最大同时执行线程数,假如 CPU 核心数为 4,那么服务器最多能同时执行 4 个线程。过多的线程会导致上 下文切换反而使得效率降低。那线程池的最大线程数可以配置为 cpu 核心数+1
    如果是 IO 密集型,主要是进行 IO 操作,执行 IO 操作的时间较长,这是 cpu 处于空闲状态, 导致 cpu 的利用率不高,这种情况下可以增加线程池的大小。这种情况下可以结合线程的等待时长来做判断,等待时间越高,那么线程数也相对越多。一般可以配置 cpu 核心数的 2 倍。 一个公式:线程池设定最佳线程数目 = (线程池设定的线程等待时间+线程 CPU 时间)/ 线程 CPU 时间 )* CPU 数目
    这个公式的线程 cpu 时间是预估的程序单个线程在 cpu 上运行的时间(通常使用 loadrunner 测试大量运行次数求出平均值)
  • 线程池中的线程初始化
    默认情况下,创建线程池之后,线程池中是没有线程的,需要提交任务之后才会创建线程。 在实际中如果需要线程池创建之后立即创建线程,可以通过以下两个方法办到: prestartCoreThread():初始化一个核心线程;
    prestartAllCoreThreads():初始化所有核心线程
ThreadPoolExecutor tpe=(ThreadPoolExecutor)service; 
tpe.prestartAllCoreThreads();
  • 线程池的关闭
    ThreadPoolExecutor 提供了两个方法,用于线程池的关闭,分别是 shutdown()和 shutdownNow(),其中:shutdown():不会立即终止线程池,而是要等所有任务缓存队列中的任务都执行完后才终止,但再也不会接受新的任务 shutdownNow():立即终止线程池,并尝试打断正在执行的任务,并且清空任务缓存队列,返回尚未执行的任务
  • 线程池容量的动态调整
    ThreadPoolExecutor 提供了动态调整线程池容量大小的方法:setCorePoolSize()和 setMaximumPoolSize(),setCorePoolSize:设置核心池大小 setMaximumPoolSize:设置线程池最大能创建的线程数目大小
    任务缓存队列及排队策略
    在前面我们多次提到了任务缓存队列,即 workQueue,它用来存放等待执行的任务。 workQueue 的类型为 BlockingQueue,通常可以取下面三种类型:
  1. ArrayBlockingQueue:基于数组的先进先出队列,此队列创建时必须指定大小;
  2. LinkedBlockingQueue:基于链表的先进先出队列,如果创建时没有指定此队列大小,则默认为 Integer.MAX_VALUE;
  3. SynchronousQueue:这个队列比较特殊,它不会保存提交的任务,而是将直接新建一个线程来执行新来的任务。
  • 线程池的监控
    如果在项目中大规模的使用了线程池,那么必须要有一套监控体系,来指导当前线程池的状态,当出现问题的时候可以快速定位到问题。而线程池提供了相应的扩展方法,我们通过重写线程池的 beforeExecuteafterExecuteshutdown 等方式就可以实现对线程的监控,示例:
public class Test extends ThreadPoolExecutor {
    
    

    // 保存任务开始执行的时间,当任务结束时,用任务结束时间减去开始时间计算任务执行时间 
    private ConcurrentHashMap<String, Date> startTimes;

    public Test(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) {
    
    
        super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);
        this.startTimes = new ConcurrentHashMap<>();
    }

    @Override
    public void shutdown() {
    
    
        System.out.println("已经执行的任务数: " + this.getCompletedTaskCount() + ", " + "当前活动线程数:" + this.getActiveCount() + ", 当前排队线程数: " + this.getQueue().size());
        System.out.println();
        super.shutdown();
    }

    //任务开始之前记录任务开始时间
    @Override
    protected void beforeExecute(Thread t, Runnable r) {
    
    
        startTimes.put(String.valueOf(r.hashCode()), new Date());
        super.beforeExecute(t, r);
    }

    @Override
    protected void afterExecute(Runnable r, Throwable t) {
    
    
        Date startDate = startTimes.remove(String.valueOf(r.hashCode()));
        Date finishDate = new Date();
        long diff = finishDate.getTime() - startDate.getTime(); // 统计任务耗时、初始线程数、核心线程数、正在执行的任务数量、
        // 已完成任务数量、任务总数、队列里缓存的任务数量、
        // 池中存在的最大线程数、最大允许的线程数、线程空闲时间、线程池是否关闭、线程池 是否终止
        System.out.print("任务耗时:" + diff + "\n");
        System.out.print("初始线程数:" + this.getPoolSize() + "\n");
        System.out.print("核心线程数:" + this.getCorePoolSize() + "\n");
        System.out.print("正在执行的任务数量:" + this.getActiveCount() + "\n");
        System.out.print("已经执行的任务数:" + this.getCompletedTaskCount() + "\n ");
        System.out.print(" 任务总数: " + this.getTaskCount() + "\n");
        System.out.print("最大允许的线程数: " + this.getMaximumPoolSize() + "\n ");
        System.out.print(" 线程空闲时 间: " + this.getKeepAliveTime(TimeUnit.MILLISECONDS) + "\n ");
        System.out.println();
        super.afterExecute(r, t);
    }

    public static ExecutorService newCachedThreadPool() {
    
    
        return new Test(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new
                SynchronousQueue());
    }
}

测试类

public class ceshi implements Runnable {
    
    
    private static ExecutorService es = Test.newCachedThreadPool();

    @Override
    public void run() {
    
    
        try {
    
    
            Thread.sleep(1000);
        } catch (InterruptedException e) {
    
    
            e.printStackTrace();
        }
    }

    public static void main(String[] args) throws Exception {
    
    
        for (int i = 0; i < 100; i++) {
    
    
            es.execute(new Test());
        }
        es.shutdown();
    }

}

Callable/Future 使用及原理分析

线程池的执行任务有两种方法,一种是 submit、一种是 execute; 这两个方法是有区别的,那么基于这个区别我们再来看看。

public static void main(String[] args) throws InterruptedException {
    
    
    ExecutorService es = Executors.newFixedThreadPool(1);
    Thread t = new Thread();
    Future<?> submit = es.submit(t); // 可以有返回值,也可以没有
    es.execute(t);	// 没有返回值
    System.out.println(future.get());
}

execute 和 submit 区别

  1. execute 只可以接收一个 Runnable 的参数
  2. execute 如果出现异常会抛出
  3. execute 没有返回值
  4. submit 可以接收 Runable 和 Callable 这两种类型的参数,
  5. 对于 submit 方法,如果传入一个 Callable,可以得到一个 Future 的返回值
  6. submit 方法调用不会抛异常,除非调用 Future.get

猜你喜欢

转载自blog.csdn.net/nonage_bread/article/details/110933853