奇素数p表成二数平方和的相关引理和结果 (一)

索引

记号

(1) p i ∥ x   ⇔   p i ∣ x   ∧   p i + 1 ∣ x \left. { {p}^{i}} \right\|x\text{ }\Leftrightarrow \text{ }\left. { {p}^{i}} \right|x\text{ }\wedge \text{ }{ {p}^{i+1}}\cancel{|}x pix  pix  pi+1 x.

引理1 设 n ∈ Z > 0 n\in { {\mathbb{Z}}_{>0}} nZ>0, x , y , z , w ∈ Z x,y,z,w\in \mathbb{Z} x,y,z,wZ, 成立恒等式 ( x 2 + n y 2 ) ( z 2 + n w 2 ) = ( x z + n y w ) 2 + n ( x w − y z ) 2 . \left( { {x}^{2}}+n{ {y}^{2}} \right)\left( { {z}^{2}}+n{ {w}^{2}} \right)={ {\left( xz+nyw \right)}^{2}}+n{ {\left( xw-yz \right)}^{2}}. (x2+ny2)(z2+nw2)=(xz+nyw)2+n(xwyz)2.

证明
( x 2 + n y 2 ) ( z 2 + n w 2 ) = x 2 z 2 + n y 2 z 2 + n x 2 w 2 + n 2 y 2 w 2 = [ ( x z ) 2 + 2 n x y z w + ( n y w ) 2 ] + n [ ( x w ) 2 − 2 x y z w + ( y z ) 2 ] = ( x z + n y w ) 2 + n ( x w − y z ) 2 . \begin{aligned} & \left( { {x}^{2}}+n{ {y}^{2}} \right)\left( { {z}^{2}}+n{ {w}^{2}} \right) \\ & ={ {x}^{2}}{ {z}^{2}}+n{ {y}^{2}}{ {z}^{2}}+n{ {x}^{2}}{ {w}^{2}}+{ {n}^{2}}{ {y}^{2}}{ {w}^{2}} \\ & =\left[ { {\left( xz \right)}^{2}}+2nxyzw+{ {\left( nyw \right)}^{2}} \right]+n\left[ { {\left( xw \right)}^{2}}-2xyzw+{ {\left( yz \right)}^{2}} \right] \\ & ={ {\left( xz+nyw \right)}^{2}}+n{ {\left( xw-yz \right)}^{2}}. \\ \end{aligned} (x2+ny2)(z2+nw2)=x2z2+ny2z2+nx2w2+n2y2w2=[(xz)2+2nxyzw+(nyw)2]+n[(xw)22xyzw+(yz)2]=(xz+nyw)2+n(xwyz)2.

推论1-1 设 n ∈ Z > 0 n\in { {\mathbb{Z}}_{>0}} nZ>0, x , y , z , w ∈ Z x,y,z,w\in \mathbb{Z} x,y,z,wZ, 成立恒等式 ( x 2 + n y 2 ) ( z 2 + n w 2 ) = ( x z − n y w ) 2 + n ( x w − y z ) 2 . \left( { {x}^{2}}+n{ {y}^{2}} \right)\left( { {z}^{2}}+n{ {w}^{2}} \right)={ {\left( xz-nyw \right)}^{2}}+n{ {\left( xw-yz \right)}^{2}}. (x2+ny2)(z2+nw2)=(xznyw)2+n(xwyz)2.

证明 将引理1中的 y y y替换为 − y -y y即可得到该结论.

引理2 设 n ∈ Z > 0 n\in { {\mathbb{Z}}_{>0}} nZ>0, N = a 2 + n b 2 N={ {a}^{2}}+n{ {b}^{2}} N=a2+nb2, a , b ∈ Z a,b\in \mathbb{Z} a,bZ. 设 q = x 2 + n y 2 q={ {x}^{2}}+n{ {y}^{2}} q=x2+ny2是素数, x , y ∈ Z x,y\in \mathbb{Z} x,yZ, gcd ⁡ ( q , n ) = 1 \gcd \left( q,n \right)=1 gcd(q,n)=1, q ∣ N \left. q \right|N qN. 则存在 c , d ∈ Z c,d\in \mathbb{Z} c,dZ, 满足 N q = c 2 + n d 2 \frac{N}{q}={ {c}^{2}}+n{ {d}^{2}} qN=c2+nd2.

证明
第一步, 我们指出成立
q ∣ n ( x b − a y ) ( x b + a y ) . (2.1) \left. q \right|n\left( xb-ay \right)\left( xb+ay \right). \tag{2.1} qn(xbay)(xb+ay).(2.1)
事实上, 由于 q ∣ N \left. q \right|N qN, 因此有 q ∣ ( x 2 N − a 2 q ) \left. q \right|\left( { {x}^{2}}N-{ {a}^{2}}q \right) q(x2Na2q), 即有
q ∣ x 2 ( a 2 + n b 2 ) − a 2 ( x 2 + n y 2 ) = n ( x 2 b 2 − a 2 y 2 ) = n ( x b − a y ) ( x b + a y ) . \left. q \right|{ {x}^{2}}\left( { {a}^{2}}+n{ {b}^{2}} \right)-{ {a}^{2}}\left( { {x}^{2}}+n{ {y}^{2}} \right)=n\left( { {x}^{2}}{ {b}^{2}}-{ {a}^{2}}{ {y}^{2}} \right)=n\left( xb-ay \right)\left( xb+ay \right). qx2(a2+nb2)a2(x2+ny2)=n(x2b2a2y2)=n(xbay)(xb+ay).

第二步, 我们指出成立
q ∣ x b − a y   或   q ∣ x b + a y . (2.2) \left. q \right|xb-ay\text{ }或\text{ }\left. q \right|xb+ay. \tag{2.2} qxbay  qxb+ay.(2.2)
事实上, 由 gcd ⁡ ( q , n ) = 1 \gcd \left( q,n \right)=1 gcd(q,n)=1和式(2.1), 有 q ∣ ( x b − y a ) ( x b + y a ) \left. q \right|\left( xb-ya \right)\left( xb+ya \right) q(xbya)(xb+ya). 又由于 q q q是素数, 因此式(2.2)成立. 基于此, 不妨设 q ∣ x b − a y \left. q \right|xb-ay qxbay, 即 ∃ d ∈ Z \exists d\in \mathbb{Z} dZ, 使得
x b − a y = d q . (2.3) xb-ay=dq. \tag{2.3} xbay=dq.(2.3)

第三步, 由式(2.3)和 q = x 2 + n y 2 q={ {x}^{2}}+n{ {y}^{2}} q=x2+ny2, 成立等式
( a + n d y ) y = a y + n d y 2 = ( x b − d q ) + n d y 2 = x b − d ( q − n y 2 ) = x b − d x 2 = ( b − d x ) x . (2.4) \begin{aligned} & \left( a+ndy \right)y=ay+nd{ {y}^{2}} \\ & =\left( xb-dq \right)+nd{ {y}^{2}} \\ & =xb-d\left( q-n{ {y}^{2}} \right) \\ & =xb-d{ {x}^{2}} \\ & =\left( b-dx \right)x. \\ \end{aligned} \tag{2.4} (a+ndy)y=ay+ndy2=(xbdq)+ndy2=xbd(qny2)=xbdx2=(bdx)x.(2.4)
因此成立
x ∣ ( a + n d y ) y . (2.5) \left. x \right|\left( a+ndy \right)y. \tag{2.5} x(a+ndy)y.(2.5)

第四步, 我们指出成立
gcd ⁡ ( x , y ) = 1. (2.6) \gcd \left( x,y \right)=1. \tag{2.6} gcd(x,y)=1.(2.6)
事实上, 有
{ gcd ⁡ ( x , y ) ∣ x gcd ⁡ ( x , y ) ∣ y   ⇒   { gcd ⁡ ( x , y ) 2 ∣ x 2 gcd ⁡ ( x , y ) 2 ∣ n y 2   ⇒   gcd ⁡ ( x , y ) 2 ∣ ( x 2 + n y 2 ) = q . \left\{ \begin{aligned} & \left. \gcd \left( x,y \right) \right|x \\ & \left. \gcd \left( x,y \right) \right|y \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }\left\{ \begin{aligned} & \left. \gcd { {\left( x,y \right)}^{2}} \right|{ {x}^{2}} \\ & \left. \gcd { {\left( x,y \right)}^{2}} \right|n{ {y}^{2}} \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }\left. \gcd { {\left( x,y \right)}^{2}} \right|\left( { {x}^{2}}+n{ {y}^{2}} \right)=q. { gcd(x,y)xgcd(x,y)y  gcd(x,y)2x2gcd(x,y)2ny2  gcd(x,y)2(x2+ny2)=q.
q q q是素数, 因此只能是
gcd ⁡ ( x , y ) 2 = 1 或 q   ⇒   gcd ⁡ ( x , y ) = 1   或   q ∉ Z ( 舍 ) . \gcd { {\left( x,y \right)}^{2}}=1或q\text{ }\Rightarrow \text{ }\gcd \left( x,y \right)=1\text{ }或\text{ }\sqrt[{}]{q}\notin \mathbb{Z}\left( 舍 \right). gcd(x,y)2=1q  gcd(x,y)=1  q /Z().

第五步, 由式(2.5), 式(2.6), 有 x ∣ ( a + n d y ) \left. x \right|\left( a+ndy \right) x(a+ndy), ∃ c ∈ Z \exists c\in \mathbb{Z} cZ, 使得
a + n d y = c x . (2.7) a+ndy=cx. \tag{2.7} a+ndy=cx.(2.7)
由式(2.7), 式(2.4), 成立
c x y = ( a + n d y ) y = ( b − d x ) x . (2.8) cxy=\left( a+ndy \right)y=\left( b-dx \right)x. \tag{2.8} cxy=(a+ndy)y=(bdx)x.(2.8)

第六步, 我们指出一定成立
x ≠ 0. (2.9) x\ne 0. \tag{2.9} x=0.(2.9)
事实上, 若 x = 0 x=0 x=0, 则 q = 0 2 + n y 2 = n y 2 q={ {0}^{2}}+n{ {y}^{2}}=n{ {y}^{2}} q=02+ny2=ny2. 此时有
1 = gcd ⁡ ( q , n ) = gcd ⁡ ( n y 2 , n ) = n . 1=\gcd \left( q,n \right)=\gcd \left( n{ {y}^{2}},n \right)=n. 1=gcd(q,n)=gcd(ny2,n)=n.
因此有 q = y 2 q={ {y}^{2}} q=y2是素数, 而这是不可能的.

第七步, 由式(2.8), 式(2.9), 成立
c y = b − d x . (2.10) cy=b-dx. \tag{2.10} cy=bdx.(2.10)
至此, 由式(2.7), 式(2.10), q = x 2 + n y 2 q={ {x}^{2}}+n{ {y}^{2}} q=x2+ny2和推论1-1, 成立
N = a 2 + n b 2 = ( c x − n d y ) 2 + n ( d x + c y ) 2 = ( c 2 + n d 2 ) ( x 2 + n y 2 ) = ( c 2 + n d 2 ) q . \begin{aligned} & N={ {a}^{2}}+n{ {b}^{2}} \\ & ={ {\left( cx-ndy \right)}^{2}}+n{ {\left( dx+cy \right)}^{2}} \\ & =\left( { {c}^{2}}+n{ {d}^{2}} \right)\left( { {x}^{2}}+n{ {y}^{2}} \right) \\ & =\left( { {c}^{2}}+n{ {d}^{2}} \right)q. \\ \end{aligned} N=a2+nb2=(cxndy)2+n(dx+cy)2=(c2+nd2)(x2+ny2)=(c2+nd2)q.
即有
N q = c 2 + n d 2 . \frac{N}{q}={ {c}^{2}}+n{ {d}^{2}}. qN=c2+nd2.

引理3 (下降) 设 a , b ∈ Z a,b\in \mathbb{Z} a,bZ, n ∈ { 1 , 2 , 3 } n\in \left\{ 1,2,3 \right\} n{ 1,2,3}, p p p是一奇素数, p ∣ N = a 2 + n b 2 \left. p \right|N={ {a}^{2}}+n{ {b}^{2}} pN=a2+nb2. 则 ∃ c , d ∈ Z \exists c,d\in \mathbb{Z} c,dZ, 满足 p = c 2 + n d 2 p={ {c}^{2}}+n{ {d}^{2}} p=c2+nd2.

证明
第一步, ∃ a ′ ,   b ′ ∈ Z \exists a',\text{ }b'\in \mathbb{Z} a, bZ, 满足 ∣ a ′ ∣ ≤ p 2 ,   ∣ b ′ ∣ ≤ p 2 \left| a' \right|\le \frac{p}{2},\text{ }\left| b' \right|\le \frac{p}{2} a2p, b2p, 成立
a = p s + a ′ ,   b = p t + b ′ . (3.1) a=ps+a',\text{ }b=pt+b'. \tag{3.1} a=ps+a, b=pt+b.(3.1)
且由于 p p p是奇数, 因此实际上成立
∣ a ′ ∣ < p 2 ,   ∣ b ′ ∣ < p 2 . (3.2) \left| a' \right|<\frac{p}{2},\text{ }\left| b' \right|<\frac{p}{2}. \tag{3.2} a<2p, b<2p.(3.2)
此时有
N = a 2 + n b 2 = ( p s + a ′ ) 2 + n ( p t + b ′ ) 2 = ( a ′ 2 + n b ′ 2 ) + ( p 2 s 2 + 2 p s a ′ + n ( p 2 t 2 + 2 p t b ′ ) ) = ( a ′ 2 + n b ′ 2 ) + p ( p s 2 + 2 s a ′ + n p t 2 + 2 n t b ′ ) . \begin{aligned} & N={ {a}^{2}}+n{ {b}^{2}}={ {\left( ps+a' \right)}^{2}}+n{ {\left( pt+b' \right)}^{2}} \\ & =\left( a{ {'}^{2}}+nb{ {'}^{2}} \right)+\left( { {p}^{2}}{ {s}^{2}}+2psa'+n\left( { {p}^{2}}{ {t}^{2}}+2ptb' \right) \right) \\ & =\left( a{ {'}^{2}}+nb{ {'}^{2}} \right)+p\left( p{ {s}^{2}}+2sa'+np{ {t}^{2}}+2ntb' \right). \\ \end{aligned} N=a2+nb2=(ps+a)2+n(pt+b)2=(a2+nb2)+(p2s2+2psa+n(p2t2+2ptb))=(a2+nb2)+p(ps2+2sa+npt2+2ntb).
又由于 p ∣ N \left. p \right|N pN, 于是有
p ∣ ( a ′ 2 + n b ′ 2 ) = : N ′ . (3.3) \left. p \right|\left( a{ {'}^{2}}+nb{ {'}^{2}} \right)=:N'. \tag{3.3} p(a2+nb2)=:N.(3.3)
且成立
0 ≤ N ′ = a ′ 2 + n b ′ 2 < ( p 2 ) 2 + n ( p 2 ) 2 = ( 1 + n ) p 2 4 ≤ p 2 . (3.4) 0\le N'=a{ {'}^{2}}+nb{ {'}^{2}}<{ {\left( \frac{p}{2} \right)}^{2}}+n{ {\left( \frac{p}{2} \right)}^{2}}=\frac{\left( 1+n \right){ {p}^{2}}}{4}\le { {p}^{2}}. \tag{3.4} 0N=a2+nb2<(2p)2+n(2p)2=4(1+n)p2p2.(3.4)
第二步, 设 q q q是素数, q ∣ N \left. q \right|N qN, 则成立推理
若 q ≠ p   ⇒   q < p . (3.5) 若q\ne p\text{ }\Rightarrow \text{ }q<p. \tag{3.5} q=p  q<p.(3.5)
事实上, 由于 p , q p,q p,q均为素数, p ≠ q p\ne q p=q, 且 p ∣ N ,   q ∣ N \left. p \right|N,\text{ }\left. q \right|N pN, qN, 因此有
q ∣ N p   ⇒   q ≤ N p < p 2 p = p . \left. q \right|\frac{N}{p}\text{ }\Rightarrow \text{ }q\le \frac{N}{p}<\frac{ { {p}^{2}}}{p}=p. qpN  qpN<pp2=p.
第三步, 我们指出对于任意素数 q q q, 成立推理
若 q 具 有 形 式 x 2 + n y 2 ,   n ∈ { 1 , 2 , 3 }   ⇒   gcd ⁡ ( q , n ) = 1. (3.6) 若q具有形式{ {x}^{2}}+n{ {y}^{2}},\text{ }n\in \left\{ 1,2,3 \right\}\text{ }\Rightarrow \text{ }\gcd \left( q,n \right)=1. \tag{3.6} qx2+ny2, n{ 1,2,3}  gcd(q,n)=1.(3.6)
q = 2 q=2 q=2, 则有 q = 1 2 + 1 × 1 2 = 2 q={ {1}^{2}}+1\times { {1}^{2}}=2 q=12+1×12=2, gcd ⁡ ( 2 , 1 ) = 1 \gcd \left( 2,1 \right)=1 gcd(2,1)=1.
q = 3 q=3 q=3, 则有 q = 1 2 + 2 × 1 2 = 3 q={ {1}^{2}}+2\times { {1}^{2}}=3 q=12+2×12=3, gcd ⁡ ( 3 , 2 ) = 1 \gcd \left( 3,2 \right)=1 gcd(3,2)=1.
q ≥ 5 q\ge 5 q5, 则由于 n ∈ { 1 , 2 , 3 } ,   n < q n\in \left\{ 1,2,3 \right\},\text{ }n<q n{ 1,2,3}, n<q, q q q是素数, 因此一定有 gcd ⁡ ( q , n ) = 1 \gcd \left( q,n \right)=1 gcd(q,n)=1.
综上, 推理(3.6)成立.

第四步, 我们指出若 p p p x 2 + n y 2 { {x}^{2}}+n{ {y}^{2}} x2+ny2形式, 则存在素数 q < p q<p q<p x 2 + n y 2 { {x}^{2}}+n{ {y}^{2}} x2+ny2形式.
事实上, 由式(3.4), 有
p 2 ∣ N ′ . (3.7) { {p}^{2}}\cancel{|}N'. \tag{3.7} p2 N.(3.7)
由式(3.3), (3.7), 有
p ∥ N ′ . (3.8) \left. p \right\|N'. \tag{3.8} pN.(3.8)
N ′ N' N存在不等于 p p p的其他素因子(否则由式(3.8), N ′ = p N'=p N=p x 2 + n y 2 { {x}^{2}}+n{ {y}^{2}} x2+ny2形式, 与 N ′ = a ′ 2 + n b ′ 2 N'=a{ {'}^{2}}+nb{ {'}^{2}} N=a2+nb2矛盾). 基于此, 可将 N ′ N' N进行素因子分解得到
N ′ = p ( p 1 α 1 p 2 α 2 ⋯ p s α s ) , N'=p\left( { {p}_{1}}^{ { {\alpha }_{1}}}{ {p}_{2}}^{ { {\alpha }_{2}}}\cdots { {p}_{s}}^{ { {\alpha }_{s}}} \right), N=p(p1α1p2α2psαs),
其中 p 1 , p 2 , ⋯   , p s { {p}_{1}},{ {p}_{2}},\cdots ,{ {p}_{s}} p1,p2,,ps是不等于 p p p的素数.
p 1 , p 2 , ⋯   , p s { {p}_{1}},{ {p}_{2}},\cdots ,{ {p}_{s}} p1,p2,,ps均具有 x 2 + n y 2 { {x}^{2}}+n{ {y}^{2}} x2+ny2的形式, 其中 n ∈ { 1 , 2 , 3 } n\in \left\{ 1,2,3 \right\} n{ 1,2,3}, 由推理(3.6), 成立
gcd ⁡ ( p j , n ) = 1 ,   j = 1 , 2 , ⋯   , s . \gcd \left( { {p}_{j}},n \right)=1,\text{ }j=1,2,\cdots ,s. gcd(pj,n)=1, j=1,2,,s.
由素数 p 1 ∣ N ′ = a ′ 2 + n b ′ 2 \left. { {p}_{1}} \right|N'=a{ {'}^{2}}+nb{ {'}^{2}} p1N=a2+nb2, p 1 { {p}_{1}} p1具有形式 x 2 + n y 2 { {x}^{2}}+n{ {y}^{2}} x2+ny2, gcd ⁡ ( p 1 , n ) = 1 \gcd \left( { {p}_{1}},n \right)=1 gcd(p1,n)=1, 根据引理2, ∃ a 1 ′ ,   b 1 ′ ∈ Z \exists { {a}_{1}}',\text{ }{ {b}_{1}}'\in \mathbb{Z} a1, b1Z使得 N ′ p 1 = ( a 1 ′ ) 2 + n ( b 1 ′ ) 2 . \frac{N'}{ { {p}_{1}}}={ {\left( { {a}_{1}}' \right)}^{2}}+n{ {\left( { {b}_{1}}' \right)}^{2}}. p1N=(a1)2+n(b1)2.
由素数 p 1 ∣ N ′ p 1 = ( a 1 ′ ) 2 + n ( b 1 ′ ) 2 \left. { {p}_{1}} \right|\frac{N'}{ { {p}_{1}}}={ {\left( { {a}_{1}}' \right)}^{2}}+n{ {\left( { {b}_{1}}' \right)}^{2}} p1p1N=(a1)2+n(b1)2, p 1 { {p}_{1}} p1具有形式 x 2 + n y 2 { {x}^{2}}+n{ {y}^{2}} x2+ny2, gcd ⁡ ( p 1 , n ) = 1 \gcd \left( { {p}_{1}},n \right)=1 gcd(p1,n)=1, 根据引理2, ∃ a 2 ′ ,   b 2 ′ ∈ Z \exists { {a}_{2}}',\text{ }{ {b}_{2}}'\in \mathbb{Z} a2, b2Z使得 N ′ p 1 2 = ( a 2 ′ ) 2 + n ( b 2 ′ ) 2 \frac{N'}{ { {p}_{1}}^{2}}={ {\left( { {a}_{2}}' \right)}^{2}}+n{ {\left( { {b}_{2}}' \right)}^{2}} p12N=(a2)2+n(b2)2.
继续下去, 可得到 ∃ a α 1 ′ ,   b α 1 ′ ∈ Z \exists { {a}_{ { {\alpha }_{1}}}}',\text{ }{ {b}_{ { {\alpha }_{1}}}}'\in \mathbb{Z} aα1, bα1Z使得 N ′ p 1 α 1 = ( a α 1 ′ ) + n ( b α 1 ′ ) 2 \frac{N'}{ { {p}_{1}}^{ { {\alpha }_{1}}}}=\left( { {a}_{ { {\alpha }_{1}}}}' \right)+n{ {\left( { {b}_{ { {\alpha }_{1}}}}' \right)}^{2}} p1α1N=(aα1)+n(bα1)2, 继而最终可以得到 ∃ a ∑ j = 1 s α j ′ ,   b ∑ j = 1 s α j ′ ∈ Z \exists { {a}_{\sum\limits_{j=1}^{s}{ { {\alpha }_{j}}}}}',\text{ }{ {b}_{\sum\limits_{j=1}^{s}{ { {\alpha }_{j}}}}}'\in \mathbb{Z} aj=1sαj, bj=1sαjZ满足
p = N ′ ∏ j = 1 s p j α j = ( a ∑ j = 1 s α j ′ ) 2 + n ( b ∑ j = 1 s α j ′ ) 2 . p=\frac{N'}{\prod\limits_{j=1}^{s}{ { {p}_{j}}^{ { {\alpha }_{j}}}}}={ {\left( { {a}_{\sum\limits_{j=1}^{s}{ { {\alpha }_{j}}}}}' \right)}^{2}}+n{ {\left( { {b}_{\sum\limits_{j=1}^{s}{ { {\alpha }_{j}}}}}' \right)}^{2}}. p=j=1spjαjN=aj=1sαj2+nbj=1sαj2.
这与 p p p x 2 + n y 2 { {x}^{2}}+n{ {y}^{2}} x2+ny2形式矛盾. 由反证法, ∃ q ∈ { p 1 , p 2 , ⋯   , p s } \exists q\in \left\{ { {p}_{1}},{ {p}_{2}},\cdots ,{ {p}_{s}} \right\} q{ p1,p2,,ps} x 2 + n y 2 { {x}^{2}}+n{ {y}^{2}} x2+ny2形式且 q ≠ p q\ne p q=p, 由推理(3.5), q < p q<p q<p(且由第三步讨论的第一种情况, 一定有 q ≠ 2 q\ne 2 q=2, 即 q q q是奇素数).

第五步, 第四步中得到了非 x 2 + n y 2 { {x}^{2}}+n{ {y}^{2}} x2+ny2形式的奇素数 q < p q \lt p q<p, q ∣ N ′ = a ′ 2 + n b ′ 2 \left. q \right|N'=a{ {'}^{2}}+nb{ {'}^{2}} qN=a2+nb2. 将上述步骤中的 p p p替换为 q q q, 重新经历步骤一, 步骤四, 又可以得到非 x 2 + n y 2 { {x}^{2}}+n{ {y}^{2}} x2+ny2形式的奇素数 q 1 ,   q 2 , ⋯ { {q}_{1}},\text{ }{ {q}_{2}},\cdots q1, q2,满足 q 1 > q 2 > ⋯ { {q}_{1}}>{ {q}_{2}}>\cdots q1>q2>.
总结起来即: 若 p p p x 2 + n y 2 { {x}^{2}}+n{ {y}^{2}} x2+ny2形式, 则可以产生一个无穷递降的, 非 x 2 + n y 2 { {x}^{2}}+n{ {y}^{2}} x2+ny2形式的奇素数列
{ p , q , q 1 , q 2 , ⋯   } . \left\{ p,q,{ {q}_{1}},{ {q}_{2}},\cdots \right\}. { p,q,q1,q2,}.
而这是不可能的(不存在无穷递降的正整数列). 由反证法, p p p具有 x 2 + n y 2 { {x}^{2}}+n{ {y}^{2}} x2+ny2的形式, 即 ∃ c , d ∈ Z \exists c,d\in \mathbb{Z} c,dZ, 使得 p = c 2 + n d 2 p={ {c}^{2}}+n{ {d}^{2}} p=c2+nd2.

引理4 设 n ∈ Z n\in \mathbb{Z} nZ, p p p是素数, gcd ⁡ ( p , n ) = 1 \gcd \left( p,n \right)=1 gcd(p,n)=1. 则 ( − n p ) = 1   ⇔   \left( \frac{-n}{p} \right)=1\text{ }\Leftrightarrow \text{ } (pn)=1   ∃ x , y ∈ Z \exists x,y\in \mathbb{Z} x,yZ, gcd ⁡ ( x , y ) = 1 \gcd \left( x,y \right)=1 gcd(x,y)=1, 满足 p ∣ ( x 2 + n y 2 ) \left. p \right|\left( { {x}^{2}}+n{ {y}^{2}} \right) p(x2+ny2).

证明
( ⇒ ) \left( \Rightarrow \right) () 设Legendre符号 ( − n p ) = 1 \left( \frac{-n}{p} \right)=1 (pn)=1, 则同余式 x 2 ≡ − n     m o d   p { {x}^{2}}\equiv -n\text{ }\bmod p x2n modp有解 x ≡ x 0     m o d   p x\equiv { {x}_{0}}\text{ }\bmod p xx0 modp, 此时有
x 0 2 ≡ − n     m o d   p   ⇒   x 0 2 + n ≡ 0     m o d   p   ⇒   p ∣ ( x 0 2 + n ) = ( x 0 2 + n × 1 ) ,   gcd ⁡ ( x 0 , 1 ) = 1. \begin{aligned} & { {x}_{0}}^{2}\equiv -n\text{ }\bmod p\text{ }\Rightarrow \text{ }{ {x}_{0}}^{2}+n\equiv 0\text{ }\bmod p\text{ } \\ & \Rightarrow \text{ }\left. p \right|\left( { {x}_{0}}^{2}+n \right)=\left( { {x}_{0}}^{2}+n\times 1 \right),\text{ }\gcd \left( { {x}_{0}},1 \right)=1. \\ \end{aligned} x02n modp  x02+n0 modp  p(x02+n)=(x02+n×1), gcd(x0,1)=1.

( ⇐ ) \left( \Leftarrow \right) () 设 ∃ x 0 ,   y 0 ∈ Z \exists { {x}_{0}},\text{ }{ {y}_{0}}\in \mathbb{Z} x0, y0Z, gcd ⁡ ( x 0 , y 0 ) = 1 \gcd \left( { {x}_{0}},{ {y}_{0}} \right)=1 gcd(x0,y0)=1, 满足 p ∣ ( x 0 2 + n y 0 2 ) \left. p \right|\left( { {x}_{0}}^{2}+n{ {y}_{0}}^{2} \right) p(x02+ny02), 即有
x 0 2 + n y 0 2 ≡ 0     m o d   p . (4.1) { {x}_{0}}^{2}+n{ {y}_{0}}^{2}\equiv 0\text{ }\bmod p. \tag{4.1} x02+ny020 modp.(4.1)

第一步, 我们指出成立
gcd ⁡ ( p , y 0 ) = 1. (4.2) \gcd \left( p,{ {y}_{0}} \right)=1. \tag{4.2} gcd(p,y0)=1.(4.2)
事实上, 若 p ∣ y 0 \left. p \right|{ {y}_{0}} py0, 则有
{ p ∣ ( x 0 2 + n y 0 2 ) p ∣ y 0 ⇒ p ∣ n y 0 2   ⇒   p ∣ ( x 0 2 + n y 0 2 ) − n y 0 2 = x 0 2   ⇒   p ∣ x 0   ( ∵ p 是 素 数 ) . \left\{ \begin{aligned} & \left. p \right|\left( { {x}_{0}}^{2}+n{ {y}_{0}}^{2} \right) \\ & \left. p \right|{ {y}_{0}}\Rightarrow \left. p \right|n{ {y}_{0}}^{2} \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }\left. p \right|\left( { {x}_{0}}^{2}+n{ {y}_{0}}^{2} \right)-n{ {y}_{0}}^{2}={ {x}_{0}}^{2}\text{ }\Rightarrow \text{ }\left. p \right|{ {x}_{0}}\text{ }\left( \because p是素数 \right). { p(x02+ny02)py0pny02  p(x02+ny02)ny02=x02  px0 (p).
{ p ∣ x 0 p ∣ y 0 ⇒ p ∣ gcd ⁡ ( x 0 , y 0 ) \left\{ \begin{aligned} & \left. p \right|{ {x}_{0}} \\ & \left. p \right|{ {y}_{0}} \\ \end{aligned} \right.\Rightarrow \left. p \right|\gcd \left( { {x}_{0}},{ {y}_{0}} \right) { px0py0pgcd(x0,y0), 与 gcd ⁡ ( x 0 , y 0 ) = 1 \gcd \left( { {x}_{0}},{ {y}_{0}} \right)=1 gcd(x0,y0)=1矛盾, 因此 p ∣ y 0 p\cancel{|}{ {y}_{0}} p y0, 式(4.2)成立.

第二步, 由式(4.2), 关于 y ′ y' y的同余式 y 0 y ′ ≡ 1     m o d   p { {y}_{0}}y'\equiv 1\text{ }\bmod p y0y1 modp有解 y ′ ≡ y 0 ′     m o d   p y'\equiv { {y}_{0}}'\text{ }\bmod p yy0 modp, 成立
y 0 y 0 ′ ≡ 1     m o d   p . (4.3) { {y}_{0}}{ {y}_{0}}'\equiv 1\text{ }\bmod p. \tag{4.3} y0y01 modp.(4.3)
由式(4.2), 式(4.3), 得
x 0 2 y 0 ′ 2 y 0 2 = x 0 2 ( y 0 y 0 ′ ) 2 ≡ − n y 0 2 × 1 = − n y 0 2     m o d   p . { {x}_{0}}^{2}{ {y}_{0}}{ {'}^{2}}{ {y}_{0}}^{2}={ {x}_{0}}^{2}{ {\left( { {y}_{0}}{ {y}_{0}}' \right)}^{2}}\equiv -n{ {y}_{0}}^{2}\times 1=-n{ {y}_{0}}^{2}\text{ }\bmod p. x02y02y02=x02(y0y0)2ny02×1=ny02 modp.
由式(4.2), 进一步可得
( x 0 y 0 ′ ) 2 = x 0 2 y 0 ′ 2 ≡ − n     m o d   p . (4.4) { {\left( { {x}_{0}}{ {y}_{0}}' \right)}^{2}}={ {x}_{0}}^{2}{ {y}_{0}}{ {'}^{2}}\equiv -n\text{ }\bmod p. \tag{4.4} (x0y0)2=x02y02n modp.(4.4)
即同余式 z 2 ≡ − n     m o d   p { {z}^{2}}\equiv -n\text{ }\bmod p z2n modp有解 z ≡ x 0 y 0 ′     m o d   p . z\equiv { {x}_{0}}{ {y}_{0}}'\text{ }\bmod p. zx0y0 modp. 又由于 gcd ⁡ ( p , n ) = 1 \gcd \left( p,n \right)=1 gcd(p,n)=1, 因此有
( − n p ) = 1. \left( \frac{-n}{p} \right)=1. (pn)=1.

定理5 (Fermat) 设 n ∈ { 1 , 2 , 3 } n\in \left\{ 1,2,3 \right\} n{ 1,2,3}, p p p是一奇素数, gcd ⁡ ( p , n ) = 1 \gcd \left( p,n \right)=1 gcd(p,n)=1. 成立等价关系 p = c 2 + n d 2 ,   ∃ c , d ∈ Z   ⇔   ( − n p ) = 1   ⇔   p ≡ { 1     m o d   4 ,   n = 1 , 1 , 3     m o d   8 ,   n = 2 , 1     m o d   3 ,   n = 3. p={ {c}^{2}}+n{ {d}^{2}},\text{ }\exists c,d\in \mathbb{Z}\text{ }\Leftrightarrow \text{ }\left( \frac{-n}{p} \right)=1\text{ }\Leftrightarrow \text{ }p\equiv \left\{ \begin{aligned} & 1\text{ }\bmod 4,\text{ }n=1, \\ & 1,3\text{ }\bmod 8,\text{ }n=2, \\ & 1\text{ }\bmod 3,\text{ }n=3. \\ \end{aligned} \right. p=c2+nd2, c,dZ  (pn)=1  p1 mod4, n=1,1,3 mod8, n=2,1 mod3, n=3.

证明
先证明成立等价关系
p = c 2 + n d 2 ,   ∃ c , d ∈ Z   ⇔   ( − n p ) = 1. p={ {c}^{2}}+n{ {d}^{2}},\text{ }\exists c,d\in \mathbb{Z}\text{ }\Leftrightarrow \text{ }\left( \frac{-n}{p} \right)=1. p=c2+nd2, c,dZ  (pn)=1.
( ⇒ ) \left( \Rightarrow \right) () 设 ∃ c , d ∈ Z \exists c,d\in \mathbb{Z} c,dZ, 满足 p = c 2 + n d 2 p={ {c}^{2}}+n{ {d}^{2}} p=c2+nd2, 当然也有
p ∣ p = ( c 2 + n d 2 ) . (5.1) \left. p \right|p=\left( { {c}^{2}}+n{ {d}^{2}} \right). \tag{5.1} pp=(c2+nd2).(5.1)
{ gcd ⁡ ( c , d ) ∣ c gcd ⁡ ( c , d ) ∣ d   ⇒   { gcd ⁡ ( c , d ) 2 ∣ c 2 gcd ⁡ ( c , d ) 2 ∣ n d 2   ⇒   gcd ⁡ ( c , d ) 2 ∣ ( c 2 + n d 2 ) = p . \left\{ \begin{aligned} & \left. \gcd \left( c,d \right) \right|c \\ & \left. \gcd \left( c,d \right) \right|d \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }\left\{ \begin{aligned} & \left. \gcd { {\left( c,d \right)}^{2}} \right|{ {c}^{2}} \\ & \left. \gcd { {\left( c,d \right)}^{2}} \right|n{ {d}^{2}} \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }\left. \gcd { {\left( c,d \right)}^{2}} \right|\left( { {c}^{2}}+n{ {d}^{2}} \right)=p. { gcd(c,d)cgcd(c,d)d  gcd(c,d)2c2gcd(c,d)2nd2  gcd(c,d)2(c2+nd2)=p.
由于 p p p是素数, 因此有 gcd ⁡ ( c , d ) 2 = 1 \gcd { {\left( c,d \right)}^{2}}=1 gcd(c,d)2=1 gcd ⁡ ( c , d ) 2 = p \gcd { {\left( c,d \right)}^{2}}=p gcd(c,d)2=p, 因此只能是
gcd ⁡ ( c , d ) = 1. (5.2) \gcd \left( c,d \right)=1. \tag{5.2} gcd(c,d)=1.(5.2)
由式(5.1), 式(5.2), gcd ⁡ ( p , n ) = 1 \gcd \left( p,n \right)=1 gcd(p,n)=1引理4, 即得到 ( − n p ) = 1 \left( \frac{-n}{p} \right)=1 (pn)=1.

( ⇐ ) \left( \Leftarrow \right) () 设 ( − n p ) = 1 \left( \frac{-n}{p} \right)=1 (pn)=1. 由于 gcd ⁡ ( p , n ) = 1 \gcd \left( p,n \right)=1 gcd(p,n)=1, 由引理4, ∃ x , y ∈ Z \exists x,y\in \mathbb{Z} x,yZ满足 gcd ⁡ ( x , y ) = 1 \gcd \left( x,y \right)=1 gcd(x,y)=1, 使得 p ∣ ( x 2 + n y 2 ) \left. p \right|\left( { {x}^{2}}+n{ {y}^{2}} \right) p(x2+ny2). 又由于 n ∈ Z ≤ 3 n\in { {\mathbb{Z}}_{\le 3}} nZ3, 根据引理3 (下降), 即得 ∃ c , d ∈ Z \exists c,d\in \mathbb{Z} c,dZ, 使得 p = c 2 + n d 2 p={ {c}^{2}}+n{ {d}^{2}} p=c2+nd2.

再证明成立等价关系
( − n p ) = 1   ⇔   p ≡ { 1     m o d   4 ,   n = 1 , 1 , 3     m o d   8 ,   n = 2 , 1     m o d   3 ,   n = 3. \left( \frac{-n}{p} \right)=1\text{ }\Leftrightarrow \text{ }p\equiv \left\{ \begin{aligned} & 1\text{ }\bmod 4,\text{ }n=1, \\ & 1,3\text{ }\bmod 8,\text{ }n=2, \\ & 1\text{ }\bmod 3,\text{ }n=3. \\ \end{aligned} \right. (pn)=1  p1 mod4, n=1,1,3 mod8, n=2,1 mod3, n=3.
由博文《Legendre符号的定义和基本性质》, 有以下讨论.
n = 1 n=1 n=1时, 直接有 ( − 1 p ) ≡ 1   ⇔   p ≡ 1     m o d   4. \left( \frac{-1}{p} \right)\equiv 1\text{ }\Leftrightarrow \text{ }p\equiv 1\text{ }\bmod 4. (p1)1  p1 mod4.
n = 2 n=2 n=2时, 我们指出成立 ( − 2 p ) = 1   ⇔   p ≡ 1 , 3     m o d   8. (5.3) \left( \frac{-2}{p} \right)=1\text{ }\Leftrightarrow \text{ }p\equiv 1,3\text{ }\bmod 8. \tag{5.3} (p2)=1  p1,3 mod8.(5.3)
事实上, ( − 2 p ) = ( − 1 p ) ( 2 p ) \left( \frac{-2}{p} \right)=\left( \frac{-1}{p} \right)\left( \frac{2}{p} \right) (p2)=(p1)(p2), 欲成立 ( − 2 p ) = 1 \left( \frac{-2}{p} \right)=1 (p2)=1, 只有两种情况:
(1) ( − 1 p ) = ( 2 p ) = 1   ⇔   { p ≡ 1     m o d   4 p ≡ ± 1     m o d   8   ⇔   p ≡ 1     m o d   8. \left( \frac{-1}{p} \right)=\left( \frac{2}{p} \right)=1\text{ }\Leftrightarrow \text{ }\left\{ \begin{aligned} & p\equiv 1\text{ }\bmod 4 \\ & p\equiv \pm 1\text{ }\bmod 8 \\ \end{aligned} \right.\text{ }\Leftrightarrow \text{ }p\equiv 1\text{ }\bmod 8. (p1)=(p2)=1  { p1 mod4p±1 mod8  p1 mod8.
(2) ( − 1 p ) = ( 2 p ) = − 1   ⇔   { p ≡ 3     m o d   4 p ≡ ± 3     m o d   8   ⇔   p ≡ 3     m o d   8. \left( \frac{-1}{p} \right)=\left( \frac{2}{p} \right)=-1\text{ }\Leftrightarrow \text{ }\left\{ \begin{aligned} & p\equiv 3\text{ }\bmod 4 \\ & p\equiv \pm 3\text{ }\bmod 8 \\ \end{aligned} \right.\text{ }\Leftrightarrow \text{ }p\equiv 3\text{ }\bmod 8. (p1)=(p2)=1  { p3 mod4p±3 mod8  p3 mod8.
于是也就成立等价关系(5.3).

n = 3 n=3 n=3时, 我们指出成立 ( − 3 p ) = 1   ⇔   p ≡ 1     m o d   3. (5.4) \left( \frac{-3}{p} \right)=1\text{ }\Leftrightarrow \text{ }p\equiv 1\text{ }\bmod 3. \tag{5.4} (p3)=1  p1 mod3.(5.4)
事实上, 由二次互反律, 有
( p 3 ) = ( − 1 ) p − 1 2 3 − 1 2 ( 3 p ) = ( − 1 ) p − 1 2 ( 3 p ) = ( − 1 p ) ( 3 p ) = ( − 3 p ) . \left( \frac{p}{3} \right)={ {\left( -1 \right)}^{\frac{p-1}{2}\frac{3-1}{2}}}\left( \frac{3}{p} \right)={ {\left( -1 \right)}^{\frac{p-1}{2}}}\left( \frac{3}{p} \right)=\left( \frac{-1}{p} \right)\left( \frac{3}{p} \right)=\left( \frac{-3}{p} \right). (3p)=(1)2p1231(p3)=(1)2p1(p3)=(p1)(p3)=(p3).

{ p ≡ 0     m o d   3   ⇔   ( p 3 ) = 0 p ≡ 1     m o d   3   ⇔   ( p 3 ) = 1 p ≡ 2     m o d   3   ⇔   ( p 3 ) = − 1 \left\{ \begin{aligned} & p\equiv 0\text{ }\bmod 3\text{ }\Leftrightarrow \text{ }\left( \frac{p}{3} \right)=0 \\ & p\equiv 1\text{ }\bmod 3\text{ }\Leftrightarrow \text{ }\left( \frac{p}{3} \right)=1 \\ & p\equiv 2\text{ }\bmod 3\text{ }\Leftrightarrow \text{ }\left( \frac{p}{3} \right)=-1 \\ \end{aligned} \right. p0 mod3  (3p)=0p1 mod3  (3p)=1p2 mod3  (3p)=1
于是也就成立等价关系(5.4).

推论6 不定方程 p = x 2 + y 2 p={ {x}^{2}}+{ {y}^{2}} p=x2+y2有(正)整数解 ⇔ \Leftrightarrow p = 4 m + 1 p=4m+1 p=4m+1.


推论7 不定方程 p = x 2 + 2 y 2 p={ {x}^{2}}+2{ {y}^{2}} p=x2+2y2有(正)整数解 ⇔ \Leftrightarrow ( − 2 p ) = 1 \left( \frac{-2}{p} \right)=1 (p2)=1, 即 p = 8 m + 1 p=8m+1 p=8m+1 p = 8 m + 3 p=8m+3 p=8m+3.


推论8 不定方程 p = x 2 + 3 y 2 p={ {x}^{2}}+3{ {y}^{2}} p=x2+3y2有(正)整数解 ⇔ \Leftrightarrow ( − 3 p ) = 1 \left( \frac{-3}{p} \right)=1 (p3)=1.


猜你喜欢

转载自blog.csdn.net/qq_44261017/article/details/110805614
今日推荐