一个HashMap,跟面试官扯皮了半个多小时

前言

HashMap 应该算是 Java 后端工程师面试的必问题,因为其中的知识点太多,很适合用来考察面试者的 Java 基础。文章来源与:GitChat 作者:枫 。另外提供免费的Java架构学习资料,学习技术内容包含有:Spring,Dubbo,MyBatis, RPC, 源码分析,高并发、高性能、分布式,性能优化,微服务 高级架构开发等等。
在这里插入图片描述
下面这个链接,暗号: csdn 。加入即可获得。
点这个,这个。文章最后也有进入方式。

开场

面试官: 你先自我介绍一下吧!

安琪拉: 我是安琪拉,草丛三婊之一,最强中单(钟馗不服)!哦,不对,串场了,我是**,目前在–公司做–系统开发。

面试官: 看你简历上写熟悉 Java 集合,HashMap 用过的吧?

安琪拉: 用过的。(还是熟悉的味道)

面试官: 那你跟我讲讲 HashMap 的内部数据结构?

安琪拉: 目前我用的是 JDK1.8 版本的,内部使用数组 + 链表红黑树;

安琪拉: 方便我给您画个数据结构图吧:
在这里插入图片描述
面试官: 那你清楚 HashMap 的数据插入原理吗?

安琪拉: 呃[做沉思状]。我觉得还是应该画个图比较清楚,如下:
在这里插入图片描述

  1. 判断数组是否为空,为空进行初始化;
  2. 不为空,计算 k 的 hash 值,通过(n - 1) & hash计算应当存放在数组中的下标 index;
  3. 查看 table[index] 是否存在数据,没有数据就构造一个 Node 节点存放在 table[index] 中;
  4. 存在数据,说明发生了 hash 冲突(存在二个节点 key 的 hash 值一样), 继续判断 key 是否相等,相等,用新的
    value 替换原数据(onlyIfAbsent 为 false);
  5. 如果不相等,判断当前节点类型是不是树型节点,如果是树型节点,创造树型节点插入红黑树中;
  6. 如果不是树型节点,创建普通 Node 加入链表中;判断链表长度是否大于 8, 大于的话链表转换为红黑树;
  7. 插入完成之后判断当前节点数是否大于阈值,如果大于开始扩容为原数组的二倍。
  8. 面试官: 刚才你提到 HashMap 的初始化,那 HashMap 怎么设定初始容量大小的吗?

安琪拉: [这也算问题??] 一般如果new HashMap() 不传值,默认大小是 16,负载因子是 0.75, 如果自己传入初始大小 k,初始化大小为 大于 k 的 2 的整数次方,例如如果传 10,大小为 16。(补充说明:实现代码如下)

static final int tableSizeFor(int cap) {
  int n = cap - 1;
  n |= n >>> 1;
  n |= n >>> 2;
  n |= n >>> 4;
  n |= n >>> 8;
  n |= n >>> 16;
  return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

补充说明:下图是详细过程,算法就是让初始二进制右移 1,2,4,8,16 位,分别与自己异或,把高位第一个为 1 的数通过不断右移,把高位为
1 的后面全变为 1,111111 + 1 = 1000000 = 2626 (符合大于 50 并且是 2 的整数次幂 )
在这里插入图片描述

面试官: 你提到 hash 函数,你知道 HashMap 的哈希函数怎么设计的吗?

安琪拉: [问的还挺细] hash 函数是先拿到通过 key 的 hashcode,是 32 位的 int 值,然后让 hashcode 的高 16 位和低 16 位进行异或操作。
在这里插入图片描述
面试官: 那你知道为什么这么设计吗?

安琪拉: [这也要问],这个也叫扰动函数,这么设计有二点原因:

  1. 一定要尽可能降低 hash 碰撞,越分散越好;
  2. 算法一定要尽可能高效,因为这是高频操作, 因此采用位运算;

面试官: 为什么采用 hashcode 的高 16 位和低 16 位异或能降低 hash 碰撞?hash 函数能不能直接用 key 的 hashcode?

[这问题有点刁钻], 安琪拉差点原地 了,恨不得出 biubiubiu 二一三连招。

安琪拉: 因为 key.hashCode()函数调用的是 key 键值类型自带的哈希函数,返回 int 型散列值。int 值范围为**-2147483648~2147483647**,前后加起来大概 40 亿的映射空间。只要哈希函数映射得比较均匀松散,一般应用是很难出现碰撞的。但问题是一个 40 亿长度的数组,内存是放不下的。你想,如果 HashMap 数组的初始大小才 16,用之前需要对数组的长度取模运算,得到的余数才能用来访问数组下标。(来自知乎-胖君)

源码中模运算就是把散列值和数组长度-1 做一个"与"操作,位运算比%运算要快。

bucketIndex = indexFor(hash, table.length);

static int indexFor(int h, int length) {
     return h & (length-1);
}

顺便说一下,这也正好解释了为什么 HashMap 的数组长度要取 2 的整数幂。因为这样(数组长度-1)正好相当于一个“低位掩码”。“与”操作的结果就是散列值的高位全部归零,只保留低位值,用来做数组下标访问。以初始长度 16 为例,16-1=15。2 进制表示是 00000000 00000000 00001111。和某散列值做“与”操作如下,结果就是截取了最低的四位值。

10100101 11000100 00100101
& 00000000 00000000 00001111
----------------------------------
  00000000 00000000 00000101    //高位全部归零,只保留末四位

但这时候问题就来了,这样就算我的散列值分布再松散,要是只取最后几位的话,碰撞也会很严重。更要命的是如果散列本身做得不好,分布上成等差数列的漏洞,如果正好让最后几个低位呈现规律性重复,就无比蛋疼。

时候“扰动函数”的价值就体现出来了,说到这里大家应该猜出来了。看下面这个图,
在这里插入图片描述
右位移 16 位,正好是 32bit 的一半,自己的高半区和低半区做异或,就是为了混合原始哈希码的高位和低位,以此来加大低位的随机性。而且混合后的低位掺杂了高位的部分特征,这样高位的信息也被变相保留下来。

最后我们来看一下 Peter Lawley 的一篇专栏文章《An introduction to optimising a hashing strategy》里的的一个实验:他随机选取了 352 个字符串,在他们散列值完全没有冲突的前提下,对它们做低位掩码,取数组下标。
在这里插入图片描述
结果显示,当 HashMap 数组长度为 512 的时候(2929),也就是用掩码取低 9 位的时候,在没有扰动函数的情况下,发生了 103 次碰撞,接近 30%。而在使用了扰动函数之后只有 92 次碰撞。碰撞减少了将近 10%。看来扰动函数确实还是有功效的。

另外 Java1.8 相比 1.7 做了调整,1.7 做了四次移位和四次异或,但明显 Java 8 觉得扰动做一次就够了,做 4 次的话,多了可能边际效用也不大,所谓为了效率考虑就改成一次了。

下面是 1.7 的 hash 代码:

static int hash(int h) {
    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
}

面试官: 看来做过功课,有点料啊!是不是偷偷看了安琪拉的博客, 你刚刚说到 1.8 对 hash 函数做了优化,1.8 还有别的优化吗?

安琪拉: 1.8 还有三点主要的优化:

  1. 数组+链表改成了数组+链表或红黑树;
  2. 链表的插入方式从头插法改成了尾插法,简单说就是插入时,如果数组位置上已经有元素,1.7将新元素放到数组中,原始节点作为新节点的后继节点,1.8 遍历链表,将元素放置到链表的最后;
  3. 扩容的时候 1.7 需要对原数组中的元素进行重新 hash 定位在新数组的位置,1.8
    采用更简单的判断逻辑,位置不变或索引+旧容量大小;
  4. 在插入时,1.7 先判断是否需要扩容,再插入,1.8 先进行插入,插入完成再判断是否需要扩容;

面试官: 你分别跟我讲讲为什么要做这几点优化;

安琪拉: 【咳咳,果然是连环炮】

  1. 防止发生 hash 冲突,链表长度过长,将时间复杂度由O(n)降为O(logn);
  2. 因为 1.7 头插法扩容时,头插法会使链表发生反转,多线程环境下会产生环;
    A 线程在插入节点 B,B 线程也在插入,遇到容量不够开始扩容,重新 hash,放置元素,采用头插法,后遍历到的 B 节点放入了头部,这样形成了环,如下图所示:
    在这里插入图片描述
    1.7 的扩容调用 transfer 代码,如下所示:
void transfer(Entry[] newTable, boolean rehash) {
     int newCapacity = newTable.length;
     for (Entry<K,V> e : table) {
       while(null != e) {
         Entry<K,V> next = e.next;
         if (rehash) {
           e.hash = null == e.key ? 0 : hash(e.key);
         }
         int i = indexFor(e.hash, newCapacity);
         e.next = newTable[i]; //A 线程如果执行到这一行挂起,B 线程开始进行扩容
         newTable[i] = e;
         e = next;
       }
     }
   }

扩容的时候为什么 1.8 不用重新 hash 就可以直接定位原节点在新数据的位置呢?
这是由于扩容是扩大为原数组大小的 2 倍,用于计算数组位置的掩码仅仅只是高位多了一个 1,怎么理解呢?
扩容前长度为 16,用于计算(n-1) & hash 的二进制 n-1 为 0000 1111,扩容为 32 后的二进制就高位多了 1,为 0001 1111。
因为是& 运算,1 和任何数 & 都是它本身,那就分二种情况,如下图:原数据 hashcode 高位第 4 位为 0 和高位为 1 的情况;
第四位高位为 0,重新 hash 数值不变,第四位为 1,重新 hash 数值比原来大 16(旧数组的容量)
在这里插入图片描述
面试官: 那 HashMap 是线程安全的吗?

安琪拉: 不是,在多线程环境下,1.7 会产生死循环、数据丢失、数据覆盖的问题,1.8 中会有数据覆盖的问题,以 1.8 为例,当 A 线程判断 index 位置为空后正好挂起,B 线程开始往 index 位置的写入节点数据,这时 A 线程恢复现场,执行赋值操作,就把 A 线程的数据给覆盖了;还有++size 这个地方也会造成多线程同时扩容等问题。

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
  Node<K,V>[] tab; Node<K,V> p; int n, i;
  if ((tab = table) == null || (n = tab.length) == 0)
    n = (tab = resize()).length;
  if ((p = tab[i = (n - 1) & hash]) == null)  //多线程执行到这里
    tab[i] = newNode(hash, key, value, null);
  else {
    Node<K,V> e; K k;
    if (p.hash == hash &&
        ((k = p.key) == key || (key != null && key.equals(k))))
      e = p;
    else if (p instanceof TreeNode) // 这里很重要
      e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
    else {
      for (int binCount = 0; ; ++binCount) {
        if ((e = p.next) == null) {
          p.next = newNode(hash, key, value, null);
          if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
            treeifyBin(tab, hash);
          break;
        }
        if (e.hash == hash &&
            ((k = e.key) == key || (key != null && key.equals(k))))
          break;
        p = e;
      }
    }
    if (e != null) { // existing mapping for key
      V oldValue = e.value;
      if (!onlyIfAbsent || oldValue == null)
        e.value = value;
      afterNodeAccess(e);
      return oldValue;
    }
  }
  ++modCount;
  if (++size > threshold) // 多个线程走到这,可能重复 resize()
    resize();
  afterNodeInsertion(evict);
  return null;
}

面试官: 那你平常怎么解决这个线程不安全的问题?

安琪拉: Java 中有 HashTable、Collections.synchronizedMap、以及 ConcurrentHashMap 可以实现线程安全的 Map。

HashTable 是直接在操作方法上加 synchronized 关键字,锁住整个数组,粒度比较大,Collections.synchronizedMap 是使用 Collections 集合工具的内部类,通过传入 Map 封装出一个 SynchronizedMap 对象,内部定义了一个对象锁,方法内通过对象锁实现;ConcurrentHashMap 使用分段锁,降低了锁粒度,让并发度大大提高。

面试官: 那你知道 ConcurrentHashMap 的分段锁的实现原理吗?

安琪拉: 【天啦撸! 俄罗斯套娃,一个套一个】ConcurrentHashMap 成员变量使用 volatile 修饰,免除了指令重排序,同时保证内存可见性,另外使用 CAS 操作和 synchronized 结合实现赋值操作,多线程操作只会锁住当前操作索引的节点。

如下图,线程 A 锁住 A 节点所在链表,线程 B 锁住 B 节点所在链表,操作互不干涉。
在这里插入图片描述
面试官: 你前面提到链表转红黑树是链表长度达到阈值,这个阈值是多少?

安琪拉: 阈值是 8,红黑树转链表阈值为 6

面试官: 为什么是 8,不是 16,32 甚至是 7 ?又为什么红黑树转链表的阈值是 6,不是 8 了呢?

安琪拉: 【你去问作者啊!天啦撸,biubiubiu 真想 213 连招】因为作者就这么设计的,哦,不对,因为经过计算,在 hash 函数设计合理的情况下,发生 hash 碰撞 8 次的几率为百万分之 6,概率说话。。因为 8 够用了,至于为什么转回来是 6,因为如果 hash 碰撞次数在 8 附近徘徊,会一直发生链表和红黑树的转化,为了预防这种情况的发生。

面试官: HashMap 内部节点是有序的吗?

安琪拉: 是无序的,根据 hash 值随机插入

面试官: 那有没有有序的 Map?

安琪拉: LinkedHashMap 和 TreeMap

面试官: 跟我讲讲 LinkedHashMap 怎么实现有序的?

安琪拉: LinkedHashMap 内部维护了一个单链表,有头尾节点,同时 LinkedHashMap 节点 Entry 内部除了继承 HashMap 的 Node 属性,还有 before 和 after 用于标识前置节点和后置节点。可以实现按插入的顺序或访问顺序排序。

/**
 * The head (eldest) of the doubly linked list.
*/
transient LinkedHashMap.Entry<K,V> head;

/**
  * The tail (youngest) of the doubly linked list.
*/
transient LinkedHashMap.Entry<K,V> tail;
//链接新加入的 p 节点到链表后端
private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
  LinkedHashMap.Entry<K,V> last = tail;
  tail = p;
  if (last == null)
    head = p;
  else {
    p.before = last;
    last.after = p;
  }
}
//LinkedHashMap 的节点类
static class Entry<K,V> extends HashMap.Node<K,V> {
  Entry<K,V> before, after;
  Entry(int hash, K key, V value, Node<K,V> next) {
    super(hash, key, value, next);
  }
}

示例代码:

public static void main(String[] args) {
  Map<String, String> map = new LinkedHashMap<String, String>();
  map.put("1", "安琪拉");
  map.put("2", "的");
  map.put("3", "博客");

  for(Map.Entry<String,String> item: map.entrySet()){
    System.out.println(item.getKey() + ":" + item.getValue());
  }
}
//console 输出
1:安琪拉
2:的
3:博客

面试官: 跟我讲讲 TreeMap 怎么实现有序的?

安琪拉:TreeMap 是按照 Key 的自然顺序或者 Comprator 的顺序进行排序,内部是通过红黑树来实现。所以要么 key 所属的类实现 Comparable 接口,或者自定义一个实现了 Comparator 接口的比较器,传给 TreeMap 用户 key 的比较。

面试官: 前面提到通过 CAS 和 synchronized 结合实现锁粒度的降低,你能给我讲讲 CAS 的实现以及 synchronized 的实现原理吗?

安琪拉: 下一期咋们再约时间,OK?

面试官: 好吧,回去等通知吧!

最后:

提供【免费】的Java架构学习资料,学习技术内容包含有:Spring,Dubbo,MyBatis, RPC, 源码分析,高并发、高性能、分布式,性能优化,微服务 高级架构开发等等。

下面这个链接,暗号: csdn 。加入即可获得。
点这个,这个。

另外还有Java核心知识点+全套架构师学习资料和视频+一线大厂面试宝典+面试简历模板可以领取+阿里美团网易腾讯小米爱奇艺快手哔哩哔哩面试题+Spring源码合集+Java架构实战电子书。
在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/HarderXin/article/details/107644923