Runtime学习之weak原理

两行代码

Person *person = [[Person alloc] init];
id __weak a = person;

查看汇编得知调用了_objc_initWeak和_objc_destroyWeak函数
在这里插入图片描述

查看源码

_objc_initWeak

//location :__weak指针的地址,存储指针的地址,这样便可以在最后将其指向的对象置为nil。
//newObj :所引用的对象。即例子中的obj
id
objc_initWeak(id *location, id newObj)
{
    // 如果所引用的对象不存在,将weak的地址置为nil
    if (!newObj) {
        *location = nil;
        return nil;
    }

    return storeWeak<DontHaveOld, DoHaveNew, DoCrashIfDeallocating>
        (location, (objc_object*)newObj);
}

storeWeak

再看返回的storeWeak函数源码

template <HaveOld haveOld, HaveNew haveNew,
          CrashIfDeallocating crashIfDeallocating>
static id 
storeWeak(id *location, objc_object *newObj)
{
    assert(haveOld  ||  haveNew);
    if (!haveNew) assert(newObj == nil);
	// 以前初始化的类置为nil
    Class previouslyInitializedClass = nil;
    id oldObj;
    SideTable *oldTable;
    SideTable *newTable;

    // Acquire locks for old and new values.
    // 获取新旧值的锁
    // Order by lock address to prevent lock ordering problems.
    // 按锁地址排序以防止锁排序问题
    // Retry if the old value changes underneath us.
    // 如果旧值在我们下面更改,请重试
 retry:
    //如果之前引用过对象,就取出来赋值给oldObj
    if (haveOld) {
        oldObj = *location;
        oldTable = &SideTables()[oldObj];
    } else {
        //如果没有引用过对象,oldtable赋值为nil
        oldTable = nil;
    }
    //如果__weak指针需要指向新对象,就取出来放进newObj中
    if (haveNew) {
        newTable = &SideTables()[newObj];
    } else {
        //如果没有需要引用新对象,newTable赋值为nil
        newTable = nil;
    }
    
    //加锁操作,防止多线程中竞争冲突
    SideTable::lockTwo<haveOld, haveNew>(oldTable, newTable);

    if (haveOld  &&  *location != oldObj) {
        SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
        goto retry;
    }

    // Prevent a deadlock between the weak reference machinery
    // 防止弱参考机械之间出现死锁
    // and the +initialize machinery by ensuring that no
    // weakly-referenced object has an un-+initialized isa.
    // +initialize方法,确保弱引用对象具有未初始化的isa
    if (haveNew  &&  newObj) {
        Class cls = newObj->getIsa();
        if (cls != previouslyInitializedClass  &&  
            !((objc_class *)cls)->isInitialized()) 
        {
            // 如果cls还没有初始化,先初始化,再尝试设置weak
            SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
            _class_initialize(_class_getNonMetaClass(cls, (id)newObj));

            // If this class is finished with +initialize then we're good.
            // 如果这个类用+initialize结束,那么我们很好
            // If this class is still running +initialize on this thread 
            // (i.e. +initialize called storeWeak on an instance of itself)
            // then we may proceed but it will appear initializing and 
            // not yet initialized to the check above.
            // Instead set previouslyInitializedClass to recognize it on retry.
            // 如果这个类仍然在这个线程上运行+initialize(即在它自己的一个实例上,+initialize调用storeWeak),那么我们可以继续,但是它看起来正在初始化,而且还没有初始化到检查上面。相反将previouslyInitializedClass设置为在重试时识别它。
            previouslyInitializedClass = cls;

            goto retry;
        }
    }

    // Clean up old value, if any.
    if (haveOld) {
       // 如果weak指针之前指向了一个弱引用,则会调用weak_unregister_no_lock方法将旧的weak指针地址移除
        weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
    }

    // Assign new value, if any.
    if (haveNew) {
        newObj = (objc_object *)
        // 如果weak指针需要指向一个新的引用,则会调用weak_register_no_lock方法将新的weak指针地址添加到弱引用表中
            weak_register_no_lock(&newTable->weak_table, (id)newObj, location, 
                                  crashIfDeallocating);
        // 将__weak指针记录到newobject对应的weak_table对应的weak_entry_t中
        // weak_register_no_lock returns nil if weak store should be rejected

        // Set is-weakly-referenced bit in refcount table.
        // 更新newObj的isa的weakly_referenced bit标志位
        if (newObj  &&  !newObj->isTaggedPointer()) {
            // 调用setWeaklyReferenced_nolock方法修改weak新引用的对象的bit标志位
            newObj->setWeaklyReferenced_nolock();
        }

        // Do not set *location anywhere else. That would introduce a race.
        // 引用计数不用+1
        *location = (id)newObj;
    }
    else {
        // No new value. The storage is not changed.
    }
    // 解锁
    SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);

    return (id)newObj;
}

weak_register_no_lock

我们看看将新的weak指针地址添加到弱引用中是如何实现的,即weak_register_no_lock方法

id 
weak_register_no_lock(weak_table_t *weak_table, id referent_id, 
                      id *referrer_id, bool crashIfDeallocating)
{
    // referent_id是新的被弱引用对象
    objc_object *referent = (objc_object *)referent_id;
    // referrer_id是__weak指针的地址
    objc_object **referrer = (objc_object **)referrer_id;
    
    // 如果referent为nil 或 referent 采用了TaggedPointer计数方式,直接返回,不做任何操作
    if (!referent  ||  referent->isTaggedPointer()) return referent_id;

    // ensure that the referenced object is viable
    bool deallocating;
    // 确保被引用的对象可用(没有在析构,同时应该支持weak引用)
    if (!referent->ISA()->hasCustomRR()) {
        deallocating = referent->rootIsDeallocating();
    }
    else {
        BOOL (*allowsWeakReference)(objc_object *, SEL) = 
            (BOOL(*)(objc_object *, SEL))
            object_getMethodImplementation((id)referent, 
                                           SEL_allowsWeakReference);
        if ((IMP)allowsWeakReference == _objc_msgForward) {
            return nil;
        }
        deallocating =
            ! (*allowsWeakReference)(referent, SEL_allowsWeakReference);
    }
    // 正在析构的对象,不能够被弱引用
    if (deallocating) {
        if (crashIfDeallocating) {
            _objc_fatal("Cannot form weak reference to instance (%p) of "
                        "class %s. It is possible that this object was "
                        "over-released, or is in the process of deallocation.",
                        (void*)referent, object_getClassName((id)referent));
        } else {
            return nil;
        }
    }

    // now remember it and where it is being stored
    weak_entry_t *entry;
    // 在 weak_table中找到referent对应的weak_entry,并将referrer加入到weak_entry中
    if ((entry = weak_entry_for_referent(weak_table, referent))) {
        append_referrer(entry, referrer);
    }
    else {       // 如果找不到,就新建一个
        weak_entry_t new_entry(referent, referrer);
        weak_grow_maybe(weak_table);
        weak_entry_insert(weak_table, &new_entry);
    }

    // Do not set *referrer. objc_storeWeak() requires that the 
    // value not change.

    return referent_id;
}

weak_unregister_no_lock

我们再看看怎么将旧的weak指针地址移除,即weak_unregister_no_lock方法,这里和上面的方法差不多,就不再注释了

void
weak_unregister_no_lock(weak_table_t *weak_table, id referent_id, 
                        id *referrer_id)
{
    objc_object *referent = (objc_object *)referent_id;
    objc_object **referrer = (objc_object **)referrer_id;

    weak_entry_t *entry;

    if (!referent) return;

    if ((entry = weak_entry_for_referent(weak_table, referent))) {
        remove_referrer(entry, referrer);
        bool empty = true;
        if (entry->out_of_line()  &&  entry->num_refs != 0) {
            empty = false;
        }
        else {
            for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
                if (entry->inline_referrers[i]) {
                    empty = false; 
                    break;
                }
            }
        }

        if (empty) {
            weak_entry_remove(weak_table, entry);
        }
    }

    // Do not set *referrer = nil. objc_storeWeak() requires that the 
    // value not change.
}

SideTable

我们看看贯穿全文的SideTable的结构

struct SideTable {
    spinlock_t slock;            // 自旋锁,用于上锁/解锁 SideTable。
    RefcountMap refcnts;         // 用来存储OC对象的引用计数的 hash表(仅在未开启isa优化或在isa优化情况下isa_t的引用计数溢出时才会用到)
    weak_table_t weak_table;     // 存储对象弱引用指针的hash表。是OC中weak功能实现的核心数据结构

    SideTable() {
        memset(&weak_table, 0, sizeof(weak_table));
    }

    ~SideTable() {   // 析构函数,用于处理善后
        _objc_fatal("Do not delete SideTable.");
    }

    void lock() { slock.lock(); }
    void unlock() { slock.unlock(); }
    void forceReset() { slock.forceReset(); }

    // Address-ordered lock discipline for a pair of side tables.

    template<HaveOld, HaveNew>
    static void lockTwo(SideTable *lock1, SideTable *lock2);
    template<HaveOld, HaveNew>
    static void unlockTwo(SideTable *lock1, SideTable *lock2);
};

weak_table_t

查看对象弱引用指针是怎么存储的,即查看weak_table_t结构

struct weak_table_t {
    weak_entry_t *weak_entries;        // hash数组,用来存储弱引用对象的相关信息weak_entry_t
                                       // 这里不是指weak_entry_t是哈希表,是一个value是weak_entry_t的哈希数组weak_entries
    size_t    num_entries;             // 表中元素个数
    uintptr_t mask;
    uintptr_t max_hash_displacement;   // 哈希表中可能发生冲突的最大次数
};

得知,每个weak_table_t里都有一个weak_entries来存储弱引用对象的相关信息

weak_entry_t

那我们再看看weak_entry_t

struct weak_entry_t {
    DisguisedPtr<objc_object> referent;    //被引用的弱对象
    // 引用该对象的对象列表,联合。 若个数大于4,用动态数组weak_referrer_t *referrers
    union {
        struct {
            weak_referrer_t *referrers;
            uintptr_t        out_of_line_ness : 2;
            uintptr_t        num_refs : PTR_MINUS_2;
            uintptr_t        mask;
            uintptr_t        max_hash_displacement;
        };
        struct {
            // 引用个数小于4,用inline_referrers数组
            // out_of_line_ness field is low bits of inline_referrers[1]
            weak_referrer_t  inline_referrers[WEAK_INLINE_COUNT];
        };
    };

    // 通过该方法判断有几个元素,即采用哪种数组存储
    bool out_of_line() {
        return (out_of_line_ness == REFERRERS_OUT_OF_LINE);
    }

    weak_entry_t& operator=(const weak_entry_t& other) {
        memcpy(this, &other, sizeof(other));
        return *this;
    }

    weak_entry_t(objc_object *newReferent, objc_object **newReferrer)
        : referent(newReferent)
    {
        inline_referrers[0] = newReferrer;
        for (int i = 1; i < WEAK_INLINE_COUNT; i++) {
            inline_referrers[i] = nil;
        }
    }
};

根据引用个数来判断存储的数组,如果小于4就用定长数组,如果大于4就用动态数组

参考文献

iOS-runtime详解(二)weak底层原理

猜你喜欢

转载自blog.csdn.net/streamery/article/details/107653266